一、加氢气的新能源汽车有哪些?
新能源汽车中,加氢气的车型主要有氢燃料电池车。当前市场上较为成熟的氢燃料电池车型有丰田Mirai、本田Clarity等。与传统燃油车相比,氢燃料电池车具有零排放、零污染、零噪音等优点。而且在加氢方面也相对便利,只需要几分钟即可完成加氢,行驶里程可以达到400公里以上,同时也能够满足日常家用和长途旅行等的需求。
但是目前氢燃料电池车的价格较高,同时氢能源的生产成本和氢气加氢站的建设和运营成本也存在较大的问题,需要进一步完善和推广。
二、加氢汽车新闻
【专业】加氢汽车新闻
近年来,随着环保意识的不断提高,新能源汽车逐渐成为市场主流。其中,加氢汽车作为一种新型的电动汽车,因其环保、高效、安全等特点备受关注。本文将介绍加氢汽车的发展历程、技术特点、市场前景以及未来发展趋势。
一、发展历程
加氢汽车是一种以氢气为燃料,通过加氢站加注氢气后,在汽车行驶过程中产生动力的新能源汽车。其发展历程可以追溯到上世纪末,但受制于技术、成本、政策等多方面因素,一直未能得到广泛应用。近年来,随着氢燃料电池技术的不断突破和政策的支持,加氢汽车逐渐进入快速发展期。
二、技术特点
加氢汽车的核心技术包括氢气储存、加氢技术、燃料电池等。其中,氢气储存技术是加氢汽车的关键之一,需要解决氢气储存的安全、稳定、成本等问题。加氢技术则是保证加氢时间短、加氢效率高等问题。燃料电池则是将氢气转化为电能的关键部件,需要解决其耐久性、成本等问题。
三、市场前景
目前,加氢汽车的市场前景十分广阔。首先,随着环保政策的不断加强和新能源汽车市场的不断扩大,加氢汽车将成为新能源汽车市场的重要组成部分。其次,随着氢燃料电池技术的不断进步和加氢站的普及,加氢汽车的运行成本将逐渐降低,进一步推动其市场应用。
四、未来发展趋势
未来,加氢汽车将朝着以下几个方向发展:一是加氢站的普及和建设,这将为加氢汽车提供更加便捷的加氢服务;二是氢燃料电池技术的不断进步,这将进一步提高加氢汽车的性能和安全性;三是政策支持的加强,这将为加氢汽车的发展提供更加良好的环境。
总的来说,加氢汽车作为一种新型的电动汽车,具有广阔的市场前景和发展潜力。随着技术的不断进步和政策的支持,相信加氢汽车将在未来的新能源汽车市场中扮演越来越重要的角色。
三、加氢汽车使用成本?
氢能源如果要提高其使用范围,必须要在降低生产和运输成本方面做相应的改进,进而增加氢能源的使用。今天为大家介绍一下氢能供应链的成本主要包含哪些方面。
(一)、制氢成本
我国作为世界第一产氢大国,产能超过2000万吨/年。煤、天然气、石油等化石燃料生产的氢气占了将近70%,工业副产气体制得氢气约占30%,电解水占不到1%。我国制氢潜力巨大,煤炭、天然气制氢几乎不受资源约束,焦炭、氯碱、甲醇、合成氨的副产氢气产能也超过千万吨,2018年全国可再生能源弃电量为1023亿千瓦时,理论制氢潜力达到186万吨。
在各类制氢技术路线中,化石燃料制氢技术具有技术成熟、成本较低等优点,但也面临碳排放量高、气体杂质含量高等问题。我国煤制氢技术成熟,已实现商业化且具有明显成本优势(0.8~1.2元/标准立方米),适合大规模制氢,且我国煤炭资源丰富,煤制氢是我国当前主要的制氢方式。天然气制氢成本受原料价格影响较大,综合成本略高于煤制氢(0.8~1.5元/标准立方米),主要适用于大规模制氢,但也存在碳排放问题,同时我国天然气大量依赖进口,原料相对较难以保证。虽然未来碳捕捉技术有望解决CO2排放问题,但也会增加制氢成本。此外,化石燃料制氢技术生产的气体杂质成分多,如果要应用于燃料电池还需要进一步的提纯,增加纯化成本。
工业副产氢制氢尽管提纯工艺相对复杂,但具有技术成熟、成本低、环境相对友好等优点,有望成为近期高纯氢气的重要来源。工业副产氢制氢指利用含氢工业尾气为原料制氢的生产方式。工业含氢尾气主要包括焦炉煤气、氯碱副产气、炼厂干气、合成甲醇及合成氨弛放气等,一般用于回炉助燃或化工生产等用途,利用效率低,有较高比例的富余。目前采用变压吸附技术(PSA)的焦炉煤气制氢、氯碱尾气制氢等装置已经得到推广应用,氢气提纯成本仅0.2元/立方米,计入综合成本后仍具有明显的经济性优势。
电解水制氢技术成熟、氢气纯度高且环境友好,但是制氢成本高。电解水制氢技术主要包括碱性电解水制氢、固体质子交换膜电解水(SPE)制氢和固态氧化物电解水(SOEC)制氢。我国碱性电解水制氢技术早已成熟,是目前最成熟的电解水制氢方法,但成本仍然偏高。目前生产1立方米氢气需要消耗大约5~5.5千瓦时电能,即使采用低谷电制氢(电价取0.25元/千瓦时),加上电费以外的固定成本(约0.5元/立方米),则目前制氢综合成本至少在1.7元/立方米。SPE制氢技术在国外已进入市场导入阶段,但与SOEC技术一样,在国内还都处于研发阶段。与碱性电解水制氢技术相比,SPE制氢设备价格高出数倍,但具有对负荷变化响应速度快的特点,更适应可再生能源发电间歇性、波动性、随机性的特点,有望在装备成本降低后,成为未来更具市场前景的电解水制氢技术。总体而言,电解水制氢高灵活性和高成本的特点决定了其更适合在分布式场景进行现场制氢。
(二)、储运成本
高压气态储氢是目前氢气储存的主要方式,具有容器结构简单、能耗较低、充放速度快等优点。按照氢气状态的不同以及技术发展的不同阶段,目前国内外氢气储运方式可分为三大类:一是压缩气态储存技术,这是目前国内外最成熟的技术。根据氢气压力级别不同,可分为低压、中压和高压三类。其中,低压储罐一般用于就地储存,常见为15兆帕低压储罐;中压储罐通常储存压力为16兆帕~45兆帕,可用于加氢站的固定式储氢或其他对空间要求比较苛刻的场景;国内高压储罐最高设计压力为98兆帕,主要用于加氢站的固定式储氢。
对于车载储氢来说,目前常用的储氢罐压力为35兆帕和70兆帕,国际上70兆帕车载储氢技术成熟,已被应用于乘用车并已实现商业化应用;国内目前还普遍使用35兆帕车载储氢罐,还未形成70兆帕车载储氢罐使用标准。二是液氢技术,目前国外已经推广应用,国内只用于航天领域。液氢储氢罐的优势是储氢密度大,按每立方米液氢储罐可储存70公斤(90兆帕高压气态储氢罐储存47公斤氢气),但液氢液化过程能耗高,折合每千克氢气耗电约13千瓦时,且外部侵入热量会造成每天约1%的蒸发损失。三是固体储氢和有机液体储氢材料技术,国内外均仍处于研究开发阶段。固体储氢指各种类型的储氢合金或金属氢化物吸附储氢,这类储氢材料体积较小,因此体积储氢密度高且压力小,使用安全。但固态储氢技术要实现应用,还需要进一步提高质量储氢密度、降低释氢温度以及提高使用寿命等。有机液体储氢,一般具有储氢密度较高和运输方便的优点,如果能在降低放氢温度、减少能量消耗等方面获得突破性进展,将有望得到推广应用。
氢输送技术主要包括高压气态输送、管道输氢和液态氢输送。高压气态氢气输送技术将氢气增压至20兆帕至40兆帕左右充装到大容积气瓶组,以长管拖车从制氢厂运送至使用厂家或加氢站。通常每辆长管拖车的载运氢气量约300~500公斤,由于拖车装运的氢气重量只占运输总重量的1%~2%,运输效率较低,因此高压气态输氢技术适用于运输距离较近(不超过150公里)和输送量较低的场景,国内加氢站的外进氢气目前均采用长管拖车进行运输。管道运输则适用于大规模、长距离的氢气运输,可有效降低运输成本。随着氢能产业的快速发展,新建输氢管网可以满足巨大的用氢需求,是大规模、长距离氢气运输的发展趋势。液氢运输是将液氢装在压力通常为0.6兆帕的专用低温绝热槽罐内,利用卡车、机车和船舶进行运输。每辆汽车的液氢装载量超过2000公斤,经济运输距离超过500公里,具有氢气运输量较大,运输距离较远的优点,但是制取液氢的能耗较大,并且液氢储存、输送过程均有一定的蒸发损耗。液氢输送技术较为成熟,国外应用也已经有一定规模;而国内由于相关的法规标准欠缺,暂时没有液氢卡车罐车,仅有液氢铁路罐车。
综上所述,氢气储运方式的选择需根据需求量、运输距离综合考虑:气态长管拖车运输适合用于短距离和300千克/天需求量加氢站,目前高压储氢罐拖车运输百公里储运成本为20元/公斤,占终端氢气售价约50%;液氢储运适用于长距离运输和大于500千克/天需求量加氢站;管道运输适合大于1000千克/天需求量加氢站。固态储氢材料和有机液体储氢是氢气储存与运输的重要研究方向,目前都处于研发或小规模示范运用阶段。
(三)、加注成本
加氢站的运营成本主要包括氢气采购、运输、氢气存储,加氢站能耗及人员成本等。加氢站储气系统的储氢容器、储氢压力是其主要技术指标。目前35兆帕加氢站高压储氢容器工作压力为45兆帕。70兆帕加氢站高压储氢容器工作压力为87.5兆帕。由于目前加氢站建设数量少,各类成本无法形成行业标准。以国内某示范项目为例,其45兆帕,300标准立方米/小时压缩机成本为60万元,45兆帕和25兆帕储氢瓶成本分别为50万元和10万元,35兆帕加氢机成本为65万元,长罐拖车成本120万元,加之其他管束、监控、站内制氢等周边成本,加氢站(4压缩机×4储氢瓶)综合建站成本超过1000万元(不含土地)。
国内目前正在规划、建设中的加氢站大约有20座以上,加氢能力大都小于400公斤/天,属于示范型加氢站。以400公斤/天的加氢站为例计算,车载储氢量为4公斤,则可服务100辆轿车;公共交通客车百公里耗氢量按照8公斤计算,车载储氢量为25公斤,则可服务16辆公共交通客车。相比单个加油站平均服务上千辆汽车,加氢站单站的供应能力明显偏小。单站供应能力将影响到加氢站的经济性,考虑加氢站投资运营环节,目前氢气储运及加注占总成本近70%。随着氢能应用规模的扩大和管道运输的引入,未来氢能储运和加注成本有较大下降潜力。
从最近公布的数据来看,日本计划到2030年对于燃料电池的开发投入将达到1万亿日元;2016年美国对于燃料电池和氢能源的研发就已经超过了7600万美元;在加州目前已经建成了31个加氢站,计划2023年将建设超过100个加氢站。其实从这些数据中我们就已经可以看出全球都已经非常重视对于燃料电池的开发和氢能源的使用。
氢能源+燃料电池的组合具有非常明显的优势。首先就是排放问题,氢能源在使用的时候与燃料电池发生反应,而排出的唯一物质就是水,这可是百分百满足国际环保排放需求。加注速度快也是其主要的优势之一,据氢能源制造企业给出的数据来看,加注100L的储氢罐只需要两分钟。从加注的速度上来说就已经可以和传统的燃油加注速度媲美,这也是目前纯电动卡车在能源补速度充上无法超越的。
续航里程在纯电动卡车上来说,一直是难以解决的问题,但是氢能源+燃料电池的组合却可以很好地解决续航里程问题。这还是依靠于氢能源的加注速度,换而言之氢能源车未来其实就跟目前的燃油车一样,只是加注的能源从燃油变成了氢能源。
首先是燃料电池的寿命问题,这是目前困扰了全球所有研究燃料电池企业的一大难题。目前即便是本田新一代燃料电池系统的寿命也仅有5000小时,算下来差不多也就是200余天。对于重卡来说如此短寿命的燃料电池当然是无法满足日常使用需求的,同时短寿命也注定需要高频率的更换燃料电池,这成本对于普通用户来说根本是无法想象的。
据了解,储存一公斤氢的乘用车氢瓶需要约1000美元。由于氢需要很大的压力来压缩,氢瓶压力一般可以达到700个大气压,因此,瓶子既要轻便又要保证强度。铝合金与高强度碳纤维材料的组合,导致氢瓶成本居高不下,如果换算到重卡之上这一成本必定会呈几何倍数增加。同时安全也是一大难题,低压储氢罐如果装在卡车之上,一旦发生严重的碰撞事故是否会发生让人担心的“氢弹”爆炸?这都是未解难题!
加氢站的建设也是未来的一大难题,因为它并非我们想象中的那么容易。就拿日本已建成的加氢站为例,其建设一座加油站仅需1亿日元(约650万人民币),但是建一座中规模的FCV(参数|图片)加氢站则需要4.5亿日元(约2700万人民币),这还不算基础建设的费用以及加注设备的费用,由此可见其成本方面是很高昂的。截止到2017年底,全世界正在运营中的加氢站也仅有274座,而中国只有7座,如此稀有的配套措施无疑让氢能源汽车进度更加缓慢。
氢能源如果要实现大规模的应用还有很长的道路要走,其市场应用也是当前发展氢能源相关技术的最好保障。
四、汽油汽车能否加氢燃料?
氢燃油不可以直接加在汽油车的油箱里。合成氢燃料用于机动车是非常理想的燃料。但是汽车必须改装后才能使用合成氢燃料。用天然气改装后的汽车,充装合成氢燃料后可直接发动,无需像天然气燃烧时先汽油起动,达到3000转/分后才自动切换。驾驶感受明显动力强劲,尾气排放出水蒸汽和水滴。
合成氢燃料作为一种新型清洁能源,可替代液化石油气、天然气、煤气、汽油和柴油等。
五、氢燃料汽车怎么加氢?
需要用压缩机将氢气加压至汽车储氢瓶所需要的压力后,再经加注计量装置,加注到汽车车载储氢瓶中。随着燃料电池汽车的发展及增多,要求更高的储氢瓶充装压力,以提供更多的续航里程。
六、加氢汽车有哪些车型?
1、本田Clarity;
本田Clarity,高达750KM的续航里程,三五分钟即可加氢完毕。
2、丰田Mirai;
丰田Mirai,不差的续航历程,650KM,同样是可以三五分钟完成加氢。不过此款氢能源车跟本田Clarity相比,外观极具个性。
3、上汽大通FCV80;
上汽大通FCV80,作为国内首款实现量产的氢能源汽车,500KM的最高续航,3分钟加氢。
4、现代NEXO;
现代NEXO,这款车最大续航可以高达805KM,离不开三个小型罐体的加入。这款车还克服了燃料电池车一个大的缺陷,就是在零下30度,还可以放心使用这款车。
七、氢能源汽车怎么加氢?
燃料电池汽车是一种用车载燃料电池装置产生的电力作为动力的汽车,车载燃料电池装置所使用的燃料为高纯度氢气或含氢燃料经重整所得的高含氢重整气。
燃料电池汽车加氢时,需要用压缩机将氢气加压至汽车储氢瓶所需要的压力后,再经加注计量装置,加注到汽车车载储氢瓶中。随着燃料电池汽车的发展及增多,要求更高的储氢瓶充装压力,以提供更多的续航里程。目前,70mpa超高压的储氢瓶的应用越来越广,为了缩短加注时间,需提高氢气加注流速和加注压力,当加注速度快、加注压力大时,由于氢气压力变化会产生储氢瓶的温度急剧升高的温升现象。当超过储氢瓶的安全工作温度上限时,将破坏储氢瓶,引发严重的安全问题。而且温升现象还会导致储氢瓶的氢气实际加注质量不能达到额定加注质量。
技术实现要素:
有鉴于此,本发明提供了一种燃料电池汽车高压快速加氢方法,有效防止了加氢过程中的氢气压力的变化,避免了压力变化导致的温升问题,保护了储氢瓶,保证了加注质量,实现了氢气高压力大流量的快速安全加注。
本发明还提供了一种燃料电池汽车高压快速加氢系统。
为实现上述目的,本发明提供如下技术方案:
一种燃料电池汽车高压快速加氢方法,包括:
步骤a,在储氢瓶中加满预定压力的液体;
步骤b,用加氢站中的氢气置换步骤a中的所述储氢瓶中的液体,所述氢气的压力与步骤a中的液体的预定压力相同。
可选地,所述液体为超纯水。
可选地,所述步骤a中,通过压力传感器监测所述储氢瓶内液体的压力,当所述储氢瓶内的液体的压力达到所述预定压力时,停止加注液体。
可选地,所述步骤b中,所述氢气在加氢站中缓慢加压到所述预设压力。
可选地,所述步骤b中,所述置换过程为所述氢气从所述储氢瓶的上端瓶口进入,所述液体从所述储氢瓶的下端的瓶尾的开口流出。
可选地,所述瓶尾的开口流出的气液混合物通过气液分离器分离后回收利用。
可选地,所述液体的加注过程及氢气的加注过程均通过控制器控制。
可选地,所述储氢瓶中的液体通过水泵不断注入液体加压。
本发明还提供了一种燃料电池汽车高压快速加氢系统,所述系统用于上述的燃料电池汽车高压快速加氢方法中,包括通过进液管路与储氢瓶连通的储液装置,及通过进气管路与所述储氢瓶连通的加氢站;所述进液管路上设置有水泵。
可选地,所述储氢瓶的出口通过管路与一气液分离器连通,所述气液分离器的出口端与回气管和回水管连通,所述回气管与加氢站连通,所述回水管与储液装置连通。
可选地,所述储氢瓶的入口端设置有瓶口阀,所述储氢瓶的出口端设置有瓶尾阀;所述瓶口阀和所述瓶尾阀均与控制器通信连接。
从上述技术方案可以看出,本发明的燃料电池汽车高压快速加氢方法,先在储氢瓶中加满预定压力的液体,再用与上述液体的预定压力相同的氢气将储氢瓶中的液体排出,该过程中储氢瓶内不产生压力变化,解决了由压力变化导致的温升问题,能够实现高压力大流量的快速安全加注,避免了由于温升对储氢瓶产生的破坏,保护了储氢瓶,延长了其使用寿命,规避了加注过程中温度变化对加注质量的影响。
八、汽车加氢是液体吗?
汽车加注氢气时都是液体,是加压后的氢气。
九、华为汽车怎么加氢气?
氢能源汽车可以去加氢站里加氢。
加氢站内设施与普通加油站内的设施没有太大区别,加氢过程与一般汽油车加油类似。加氢站面积比一般加油站大,由氢气分离厂和加气台两部分组成。
氢燃料汽车实际上和普通汽车加油的过程并无明显差异。车后轮旁边有个小门,把黑色加氢枪插进加氢口,不到10分钟,这辆客车就“满血复活”了。
十、氢能源汽车加氢技术?
燃料电池汽车加氢时,需要用压缩机将氢气加压至汽车储氢瓶所需要的压力后,再经加注计量装置,加注到汽车车载储氢瓶中。随着燃料电池汽车的发展及增多,要求更高的储氢瓶充装压力,以提供更多的续航里程。
目前,70mpa超高压的储氢瓶的应用越来越广,为了缩短加注时间,需提高氢气加注流速和加注压力,当加注速度快、加注压力大时,由于氢气压力变化会产生储氢瓶的温度急剧升高的温升现象。
当超过储氢瓶的安全工作温度上限时,将破坏储氢瓶,引发严重的安全问题。
而且温升现象还会导致储氢瓶的氢气实际加注质量不能达到额定加注质量。