一、数据分析(运营分析方向)和数据分析(产品方向)的区别?
这两个岗位的差别主要有两处,分别是服务的对象不同,和对所需数据的分析和处理方式不同。
下文会详细说说这两处不同的具体表现形式,以及这两个岗位值得注意的相同点。
先说不同:
1.两个岗位所服务的对象是不一样的
数据分析(产品方向)岗位做所的工作,可能80%是围绕着产品展开的,20%是围绕着数据分析技术展开的,它本质上是一个产品工作,它所服务的对象更多是产品内部,是为产品功能服务的。
最典型的例子就是互联网公司常用的各种高大上酷炫的数据看板,以及目前沿海城市相对比较普及的智慧城市大脑,本质上也是一个数据分析(产品方向)的工作成果。
如下图展示的就是北京朝阳区的智慧城市大脑工作图,它的本质就是一个深度应用数据分析功能的,用于提升城市现代化治理能力和城市竞争力的新型基础设施产品。
数据分析(运营方向)岗位,做所的工作,可能80%是围绕着运营展开的,20%是围绕着数据分析展开的,它的本质还是一个运营工作。它关注的是各种企业运营活动产生的外部数据,更多是为公司的营销及市场前端策略服务的。
最典型的就是618、双十一的各种运营活动,究竟在什么时间段采取什么样的策略,怎么发放优惠券和拼单优惠组合,这些都是数据运营需要考虑的。
2.两个岗位对数据的思考和处理方式也是不一样的
我们以618大促作为例子:
数据分析(产品方向)岗位员工的工作强度和工作重点更多会在前期的筹备和设计阶段:
他们需要考虑,后台的数据看板需要展示哪些数据,例如日销售额、日成单量、日退单量、单日利润分析、投放引流数据等维度的数据是放在一级、二级还是三级界面展示?不同的部门数据看板的数据权限如何?
他们优先考虑规则,然后根据规则来制定数据分析的框架、数据来源和数据分析标准。
等大促真的开始之后,他们的工作反而告一段落,只需要保障自己的产品稳定运行,不会被暴起的流量冲垮崩溃就行。
数据分析(运营方向)岗位员工的工作强度则会在大促即将开始的时候加码,在大促开始之后来到顶峰:
他们不用考虑数据展示和数据来源抽取等技术性问题。他们考虑的会更加接地气,更加贴近客户和用户,更关心用户和客户的行为转化效果。
比如,大促前的拉新促活活动效果怎么样?目前发放的优惠券和满减政策,导致了多少主推商品被加入到购物车?网页内各项商品的点击量和收藏量如何?
活动开始后,数据分析(运营方向)岗位的员工还要紧密盯着每小时运营数据的变化,分析各项红包使用率、主播直播效果、热门商品排名、加购率和下单率等与销售额紧密相关的指标。通过随时调整销售策略,进行红包发放、价格调整、用户推送消息等方式提升业绩。
这里能够看到,不管是产品方向还是运营方向的岗位,想要做精,都离不开数据分析的技术功底做支撑。
这两个岗位都需要深入了解业务流程、熟练掌握数据分析工具的应用、有较高的数据敏感度,并能针对数据分析结果提供针对性的合理化建议(面向产品或面向营销)。
业务流程可以通过自学掌握;数据敏感度可以通过工作积累和刻意练习来培养;
但数据分析能力是需要通过系统性的学习才能有比较好的效果。
有志于往数据分析方向深入发展的同学,建议一方面熟悉掌握公司内部的业务流程,一方面给自己充充电,系统性的学习一下数据分析相关的知识。
这一块的专业教学,推荐知乎知学堂官方的数据分析实战课程,可以先用1毛钱的价格实际感受和体验一下课程的质量,觉得对自己工作有帮助有启发再正式购买:
3.总结
数据分析(产品方向)岗位的本质是打造产品,是为产品的功能服务的,且做的产品更多是围绕数据看板、数据平台等数据型的产品展开的。
数据分析(运营方向)岗位的本质是运营,是为市场和销售策略服务的。
再说说相同点:
这两个岗位虽然前期工作内容不同,往上晋升之路却殊途同归,都会是同一个岗位——数据分析师。
相较数据运营更加侧重于前端市场,数据产品更加侧重于后台研发,数据分析师是介于连接业务和技术之间的职位。
它得是运营人才里最懂产品的,产品人才里最懂运营的。
数据分析师的工作会涉及到大量的数据提取,数据清洗和数据多维度分析等工作,还需要根据数据的趋势预测给出产品、运营乃至公司战略上的策略建议。
从各方面评估,这都将是个高薪、高压、高挑战和高回报的岗位。
针对这样的岗位,自己的努力是不够的,需要通过体系化的学习“走捷径”。
同时,如果能在数据运营或数据产品岗位方向,就把数据分析的整体思维框架底子打好,做到熟练掌握Excel、SQL、Python、BI等数据分析工具,也可以在晋升时快人一步——这些内容在上述的知学堂官方数据分析实战课程里也有系统化的实战教学,这也是推荐学习的原因。
以上。
希望能给你带来帮助。
二、人工智能数据分析原理?
1、探索性数据分析
当数据刚取得时,可能杂乱无章,看不出规律,通过作图、造表、用各种形式的方程拟合,计算某些特征量等手段探索规律性的可能形式,即往什么方向和用何种方式去寻找和揭示隐含在数据中的规律性。
2、模型选定分析
在探索性分析的基础上提出一类或几类可能的模型,然后通过进一步的分析从中挑选一定的模型。
3、推断分析
通常使用数理统计方法对所定模型或估计的可靠程度和精确程度作出推断。
三、人工智能未来的发展方向?
人工智能未来发展方向是:
一是给个人赋能,使每个人变得更强;
二是产业互联网的智能化,即商业智能,这种情况下,企业在运行中很多决策就不依靠人,机器能够做的更快、更有效率;
最后则是 IoT 设备,万物开始有灵,设备也能够做一些简单的对外界的感知以及一些决策。
四、人工智能数据分析软件功能?
包括智能分析模型的优化,决策建议,预警分析,统计查询等。
五、人工智能是人类未来发展的方向?
人工智能是代替人类工作的,降低成本,是未来发展的方向
六、思琳未来发展历程未来发展方向与分析?
思琳(Cellink)是一家瑞典生物打印公司,专注于开发与销售生物打印设备、细胞培养耗材、基于生物打印技术的服务和应用等产品。以下是思琳未来发展历程、未来发展方向及分析:
发展历程:成立于2016年的思琳,在生物打印领域拥有丰富的经验和技术积累。目前,思琳已成为全球知名的生物打印公司之一,在欧洲、北美和亚洲等地均设有分支机构和销售网络。
未来发展方向:思琳的未来发展方向主要包括以下几个方面:
(1)扩大硬件产品线:思琳将继续推出更多高质量、高效率的生物打印设备,并不断提升设备的易用性和稳定性,以满足客户需求。
(2)加强耗材业务:作为生物打印硬件设备的配套产品,思琳将不断扩大其耗材业务,推出新品种、新规格的细胞培养耗材,以满足不同客户的需求。
(3)深化服务与应用:除了硬件设备和耗材,思琳还将加强服务和应用方面的发展。通过向客户提供一流的技术支持、培训和咨询服务,帮助客户更好地应用生物打印技术。
发展分析:随着全球对于生物医学领域的投资和研究不断增加,生物打印市场也呈现出快速增长的势头。作为全球知名的生物打印公司,思琳在技术领先性、产品品质和服务水平等方面拥有明显优势,具备稳健的市场地位和广阔的发展前景。同时,随着新型冠状病毒疫情的爆发,生物打印技术的应用领域也进一步扩大,思琳未来的发展空间将更为广阔。
七、人工智能利用大数据预测未来?
不可以预测未来,只是通过已有数据分析得出一些可能发生的事,凡是都有变化,即使有答案不一定和现实相吻合,数据是人创造的,人的行为决定。
八、医疗数据可以从哪些方向分析?
医疗数据完全满足大数据的四大特征:
量大:几乎所有临床数据都已经数据化和信息化了。
多样:其中有一些是用关系型数据库保存结构化的数据,还有一些是自然语言书写的病历和影像、心电图等数据。
高价值:“医生大量的时间都在写病例,但是其中的价值没有充分体现出来。
实时性:目前医院内部数据没有这种特征,可能各家医院的信息化都达到七级,同时能够互联互通,就具备了这种特点。
九、数据与计量分析专业方向?
主要是统计部门和各级大数据中心,属于发展型行业,有发展前途。
十、人工智能和大数据的前景和未来?
人工智能和大数据前景和未来很好!
大数据涵盖范围更广,人工智能则更为高端。大数据相当于大海里用渔网捕鱼作业,概率更高,覆盖更广。但人工智能则具有筛选和提炼,更为精准。人工智能发展前景更广!