无法在这个位置找到: article_head.htm
返回首页

人工智能涉及个人隐私应用事例?

298 2025-05-07 13:36 赋能高科

一、人工智能涉及个人隐私应用事例?

近日,马斯克坦承特斯拉汽车内摄像头可以监视驾驶员一事,引发了车主对智能汽车内部安装摄像头与窃听器的不满。虽然这两种设备在智能汽车生产厂商眼中起到的是对驾乘人员的保护作用,但依然无法打消车主心中的疑虑。

智能汽车逐步发展,无人驾驶也在“路上”。未来,如何兼顾驾乘人员的安全与隐私,是个值得探讨和重视的问题。

日前,国外有用户在社交网站向特斯拉CEO埃隆·马斯克询问特斯拉的车内摄像头是否可以检测车主目光,马斯克回复“是的”。引发舆论关注的原因是,这是特斯拉方面首次承认通过车内摄像头来监视驾驶员。

在该用户提出疑问前,马斯克就曾在社交网站上发文称将收回一些车主的完全自动驾驶能力测试版(FSD beta)的试用权限。原因是这些车主在使用FSD beta功能时,没有对道路情况给予足够的关注。马斯克称,之所以是beta版本,就意味着还处在测试阶段,尽管目前没有出现任何事故,但不能放任不管。

显然,自动驾驶将赋予智能汽车更多权利,也意味着汽车内外需要加装更多传感器、摄像头和监听器等。但不论哪种设备,都对汽车内部相对隐秘空间内的驾乘人员隐私造成了威胁。

是监视还是保护

这不是特斯拉第一次曝出信息安全丑闻。去年,一位白帽黑客格林曝光特斯拉的车载计算机系统可能会导致个人隐私的泄露。接触过特斯拉的人都知道,特斯拉的车载计算机系统功能繁多,包含收音机、蓝牙电话、上网、玩游戏等。驾乘人员还可以通过Wi-Fi 连接社交网站,甚至能存储联系人的电话号码。

但很多车主没有想到的是,暗藏在车载计算机系统屏幕背后的组件,正成为隐私数据泄露的源头。这位白帽黑客从某购物平台上购买到被换下来的自动辅助驾驶系统(AP)和媒体控制单元(MCU)。尽管这些组件已经有明显损坏迹象,但仍能从中获得之前车主的隐私,例如手机连接的电话本、通话记录、日历、家庭和工作地点的定位、导航去过的位置,以及允许访问网站的会话cookies。

之所以可以从MCU上获取个人信息,是因为特斯拉基于 Linux 内核搭载 MCU。MCU 使用的是镁光生产的嵌入式多媒体控制器(eMMC)存储颗粒,而特斯拉的车机系统并没有对这块 eMMC 硬盘进行任何的加密处理。

不仅是特斯拉,蔚来汽车“监控每位车主行程”也曾在网上闹得沸沸扬扬。此外,滴滴打车也为了确保驾乘人员安全,采取全程监听车内人员对话的措施。

尽管这些安装监听、监视设备的生产方打着“向善”的旗号,却往往没有明确告知消费者他们将会被收集哪些信息;亦无人知晓,这些信息是否真的会被妥善安全地保存。

而在信息技术飞速发展的现代,将安全性让渡给驾乘人员的隐私真的可行吗?前段时间,货拉拉公司货车女乘客跳车一事余温未了。社会上不乏对货拉拉公司为何不在车内安装监控系统的质疑之声。

安全与隐私应如何兼顾?在福州大学数学与计算机学院教授陈德旺眼中,安全与隐私是互相矛盾的名词。“想要获得更多安全性,就需要让传感器采集更多的数据。”

法规不应缺席

“目前,智能汽车要协助驾驶员对车辆进行控制时,主要采集驾驶车周边的车及所在道路场景的实时数据,例如前后左右车的位置、类型、速度,交通标志、道路线、障碍物等。而实现无人驾驶,只需要对车外进行监控即可。” 中国科学院自动化研究所研究员王飞跃在接受《中国科学报》采访时解释道,“监控车内主要是为了对驾驶员采取主动安全措施,即发现驾驶员出现疲劳驾驶、视线漂移、不系安全带等危险行为时,进行主动提醒。目前,尚没有对监控范围和清晰度有明确的统一标准。”

诚然,伴随着人工智能的发展,关于人工智能伦理的讨论从未停歇,但讨论主题却一直集中在讨论可能性和对未来影响的理论工作,而对人工智能实际应用的研究则探讨较少。因此,学术界对人工智能伦理道德的关系进行探讨虽已持续了数年,却并没有弄清普遍的人工智能伦理到底是什么。

“人工智能在当代广泛应用,带来了各种益处,但人们也发现了诸多伦理问题。直接与技术相关的,包括算法歧视、侵犯隐私等技术的误用和滥用等,较为间接和远期的则有就业问题、平等、家庭和社会关系的危机等。”中国人民大学法学院副教授郭锐告诉《中国科学报》。

就这点而言,智能汽车对隐私构成的威胁似乎并没有上升到这一高度。“从安全隐私角度以及自动驾驶及车内主动安全的技术实现上,采集的数据都是可以实时处理、实时做出自动驾驶行为,不需要保留任何数据的。这和现有车的倒车影像的逻辑是一样的。”王飞跃坦言,“但是,不排除部分厂商为了不断提升自动驾驶及主动安全的技术能力,以及识别能力,而保留部分数据,进行算法的再学习。如果能征得用户授权同意,未尝不可。”

陈德旺也建议,车企最好将车内安装设备与收集哪些信息标注清楚,让车主保留选择的权利。“有些车主认为汽车安全比隐私更重要,就可以选择让智能后台对其信息进行收集。也有车主认为车内是隐私空间,那么可以选择减少收集内容,或者适当关闭一些功能。”

对此,郭锐认为,人工智能的决策则必须按照人类的伦理来评估和校正;人工智能对社会的影响很大,牵涉很多的人,因此应当更加强调归责性。“就车内检测技术如何与隐私保护平衡的问题,我认为可以从两个维度进行考量。第一,应该遵循知情同意原则,采取‘事前告知’‘事后删除’的模式;第二,立法应对何时收集、收集到何种程度、保存期限多久等问题做出规定,并要求商业主体定期审核。”

人工智能的尺度

“人工智能技术确实存在两面性,在带来驾驶安全性提升的同时,如果不加限制,确实也会带来侵犯隐私的隐患。但是解决方案提供商以及车厂,很容易通过法律和标准来约束产品和服务的隐私程度。例如,最关键的是要求不能留存数据、不能定位,这就解决了绝大部分的隐私问题。”王飞跃表示。

目前,人工智能和自动驾驶业内有分布式(联邦)数据共享、多方(联邦)数据智能计算等技术,也取得了初步的进展,能达到“数据可用不可见”的效果。王飞跃解释说,从技术上来讲,这种模式所形成的算法,与将数据聚集在一起计算训练的效果相同或者相近,从而能比较好地平衡数据隐私版权保护、数据要素开放共享服务两者之间的矛盾。正因如此,预计“数据可用不可见”是数据应用服务的未来趋势。

郭锐也表示,智能汽车收集的数据传统上被看作隐私问题。实际上,这个问题和传统隐私权语境有所不同。不同之处在于,它不是一个一方侵权、另一方被侵权的零和游戏,还展现了车主和汽车企业之间通过合同彼此信任、合作的一面。因此,个人信息保护在这个问题上可能比隐私权保护更加切合实际。

而且,相较于智能汽车驾乘人员隐私问题,网络隐私暴露更值得关注。“在技术上,科学研究者和业界也在探索是否可以达到利用数据的同时保护隐私的效果。在治理上,我们还应该支持市场的自治,企业之间的互相竞争某种程度上能够促进用户隐私的保护。比如在搜索引擎的竞争上,一些搜索引擎会以推出更加保护隐私的服务吸引消费者。”郭锐说,其实,人工智能发展过程中遭遇的最根本的伦理难题是创造秩序危机。创造秩序危机,简而言之,是人所创造的技术对人的反噬。反思人工智能伦理,是为了应对这个危机。伦理不是为了约束科学发展,而是为了防止我们在追求某一个具体目标的时候伤害人类的整体利益。

二、人工智能应用?

1、无人驾驶汽车

无人驾驶汽车是智能汽车的一种,也称为轮式移动机器人,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶的目的。无人驾驶汽车集自动控制、体系结构、人工智能、视觉计算等众多技术于一体,是计算机科学、模式识别和智能控制技术高度发展的产物,也是衡量一个国家科研实力和工业水平的一个重要标志,在国防和国民经济领域具有广阔的应用前景。

中国自主研制的无人车——由国防科技大学自主研制的红旗HQ3无人车,2011年7月14日首次完成了从长沙到武汉286公里的高速全程无人驾驶实验,创造了中国自主研制的无人车在一般交通状况下自主驾驶的新纪录,标志着中国无人车在环境识别、智能行为决策和控制等方面实现了新的技术突破。

2、智能音箱

智能音箱是传统有源音箱智能化升级的产物,是指具备智能语音交互系统、可接入内容服务以及互联网服务,同时可关联更多设备、实现对场景化智能家居控制的智能终端产品。智能音箱集成了人工智能处理能力,能够通过语音识别、语音合成、语义理解等技术完成语音交互。

智能音箱是智能家居的组成部分之一,智能音箱的功能延伸与智能家居产生了密切联系。如果把智能家居看作是一个智能生活系统的话,那智能音箱就是人工智能管家,是核心操控者。

3、人脸识别

人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部识别的一系列相关技术,通常也叫做人像识别、面部识别。

“人脸识别系统”集成了人工智能、机器识别、机器学习、模型理论、专家系统、视频图像处理等多种专业技术,同时需结合中间值处理的理论与实现,是生物特征识别的最新应用,其核心技术的实现,展现了弱人工智能向强人工智能的转化。

4、智能客服机器人

近年来智能机器人技术不断发展和成熟,智能机器人被应用于金融、财务、客服工作等领域,其中,智能机器人在客服工作中的应用效果最为显著。它通过自动客服、智能营销、内容导航、智能语音控制等功能提高了企业客服服务水平。

智能客服系统是在大规模知识处理基础上发展起来的一项面向行业应用的,适用大规模知识处理、自然语言理解、知识管理、自动问答系统、推理等等技术行业 。相较于传统人工客服,智能客服可以 7 X 24 小时在线服务,解答客户的问题、降低客服人力成本和提升用户网站活跃时长。

5、医学成像及处理

AI在快速医学影像成像方法、医学图像质量增强方法及医学成像智能化工作流图等方面均有突出表现。随着医学影像大数据时代的到来,使用计算机辅助诊断技术对医学影像信息进行进一步的智能化分析挖掘,以辅助医生解读医学影像,成为现代医学影像技术发展的重要需求。

三、人工智能如何应用?

主要应用于以下领域

1. 医疗保健:人工智能可以帮助医生进行疾病诊断、制定治疗方案、分析医学影像、预测疾病风险等。例如,通过深度学习技术进行的癌症筛查和病理切片分析。

2. 自动驾驶:人工智能技术在无人驾驶汽车中的应用包括环境感知、路径规划、决策制定等。这使得汽车能够在各种道路条件下自主行驶。

3. 语音识别和自然语言处理:这些技术被广泛应用于智能音箱、聊天机器人、语音助手等设备中,使人们可以通过语音与设备进行交互。

四、人工智能最早应用?

在热映电影《失控玩家》中,影片主角是电子游戏的人工智能NPC的自我意识觉醒,他爱上了来自现实世界的人类玩家,这个电影的上映,再次将人工智能和人类进行了一番对比,那么计算机究竟是如何发展起来的?

第一个给现代电子计算机设计出完整蓝图的人,并不是现代科学家,而是19世纪英国伟大的天才查尔斯·巴贝吉,这位来自9世纪初,大不列颠及北爱尔兰联合王国的数学,为一个多世纪后的学者在达特茅斯学院敲定了「人工智能」的名字和研究方向,为制造、农业和教育等领域的科技革命和产业变革带来了新的驱动力奠定了基础。

五、人工智能应用基础?

  知识是人类智能的基础,人类在从事阶级斗争、生产斗争和科学试验等社会实践活动中,其智能活动过程主要是一个获取知识并运用知识的过程。

  人工智能是一门研究用计算机来模仿和执行人脑的某些智力功能的交叉学科,所以人工智能问题的求解也是以知识为基础的。

  如何从现实世界中获取知识、如何将已获得的知识以计算机内部代码的形式加以合理的表示以便于存储,以及如何运用这些知识进行推理以解决实际的问题,即知识的获取、知识的表示和运用知识进行推理是人工智能学科要研究的3个主要问题。

  在人们的日常生活及社会活动中,“知识”是常用的一个术语。例如,人们常说“我们要掌握现代科学知识”,“掌握的知识越多,你的机会就越多”等。人们所涉及的知识也是十分广泛的,例如,有的知识是多数人所熟悉的普通知识,而有的知识只是有关专家才掌握的专门领域知识。那么,到底什么是知识?知识有哪些特性?它与通常所说的信息有什么区别和联系?

  现实世界中每时每刻都产生着大量的信息,但信息是需要用一定的形式表示出来才能被记载和传递的。尤其是使用计算机来进行信息的存储及处理时,更需要用一组符号及其组合进行表示。像这样用一组符号及其组合表示的信息称为数据。

  数据与信息是两个密切相关的概念。数据是记录信息的符号,是信息的载体和表示。信息是对数据的解释,是数据在特定场合下的具体含义。只有把两者密切地结合起来,才能实现对现实世界中某一具体事物的描述。

  另外,数据和信息又是两个不同的概念,相同的数据在不同的环境下表示不同的含义,蕴涵不同的信息。比如,“100”是一个数据,它可能表示“100元钱”,也可表示“100个人”,若对于学生的考试成绩来说,可能表示“100分”。同样,相同的信息也可以用不同的数据表示出来。比如,地下工作者为了传达情报信息,可以用一首诗词的每一句的第一个字组成一句话,或诗的斜对角线上的字组成的一句话来传达信息,也可能会用一个代码或数字来表示同一信息。

  正如上述,现实生活中,信息是要以数据的形式来表达和传递的,数据中蕴涵着信息,然而,并不是所有的数据中都蕴涵着信息,而是只有那些有格式的数据才有意义。对数据中的信息的理解也是主观的、因人而异的,是以增加知识为目的的。

  人工智能的基本概念有几方面

  对于人工智能,很多人并不了解,我也如此。关于这个问题,我与我的朋友人工智能工程师张

六、人工智能的应用?

1. 无人驾驶汽车

无人驾驶汽车是智能汽车的一种,也称为轮式移动机器人,主要依靠车内以计算机系统为主的智能驾驶控制器来实现无人驾驶。无人驾驶中涉及的技术包含多个方面,例如计算机视觉、自动控制技术等。

美国、英国、德国等发达国家从20世纪70年代开始就投入到无人驾驶汽车的研究中,中国从20世纪80年代起也开始了无人驾驶汽车的研究。

2005年,一辆名为Stanley的无人驾驶汽车以平均40km/h的速度跑完了美国莫哈维沙漠中的野外地形赛道,用时6小时53分58秒,完成了约282千米的驾驶里程。

Stanley是由一辆大众途锐汽车经过改装而来的,由大众汽车技术研究部、大众汽车集团下属的电子研究工作实验室及斯坦福大学一起合作完成,其外部装有摄像头、雷达、激光测距仪等装置来感应周边环境,内部装有自动驾驶控制系统来完成指挥、导航、制动和加速等操作。

2006年,卡内基梅隆大学又研发了无人驾驶汽车Boss,Boss能够按照交通规则安全地驾驶通过附近有空军基地的街道,并且会避让其他车辆和行人。

近年来,伴随着人工智能浪潮的兴起,无人驾驶成为人们热议的话题,国内外许多公司都纷纷投入到自动驾驶和无人驾驶的研究中。例如,Google的Google X实验室正在积极研发无人驾驶汽车Google Driverless Car,百度也已启动了“百度无人驾驶汽车”研发计划,其自主研发的无人驾驶汽车Apollo还曾亮相2018年央视春晚。

但是最近两年,发现无人驾驶的复杂程度远超几年前所预期的,要真正实现商业化还有很长的路要走。

2. 人脸识别

人脸识别也称人像识别、面部识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。人脸识别涉及的技术主要包括计算机视觉、图像处理等。

人脸识别系统的研究始于20世纪60年代,之后,随着计算机技术和光学成像技术的发展,人脸识别技术水平在20世纪80年代得到不断提高。在20世纪90年代后期,人脸识别技术进入初级应用阶段。目前,人脸识别技术已广泛应用于多个领域,如金融、司法、公安、边检、航天、电力、教育、医疗等。

有一个关于人脸识别技术应用的有趣案例:张学友获封“逃犯克星”,因为警方利用人脸识别技术在其演唱会上多次抓到了在逃人员。

2018年4月7日,张学友南昌演唱会开始后,看台上一名粉丝便被警方带离现场。实际上,他是一名逃犯,安保人员通过人像识别系统锁定了在看台上的他;

2018年5月20日,张学友嘉兴演唱会上,犯罪嫌疑人于某在通过安检门时被人脸识别系统识别出是逃犯,随后被警方抓获。随着人脸识别技术的进一步成熟和社会认同度的提高,其将应用在更多领域,给人们的生活带来更多改变。

3. 机器翻译

机器翻译是计算语言学的一个分支,是利用计算机将一种自然语言转换为另一种自然语言的过程。机器翻译用到的技术主要是神经机器翻译技术(Neural Machine Translation,NMT),该技术当前在很多语言上的表现已经超过人类。

随着经济全球化进程的加快及互联网的迅速发展,机器翻译技术在促进政治、经济、文化交流等方面的价值凸显,也给人们的生活带来了许多便利。例如我们在阅读英文文献时,可以方便地通过有道翻译、Google翻译等网站将英文转换为中文,免去了查字典的麻烦,提高了学习和工作的效率。

4. 声纹识别

生物特征识别技术包括很多种,除了人脸识别,目前用得比较多的有声纹识别。声纹识别是一种生物鉴权技术,也称为说话人识别,包括说话人辨认和说话人确认。

声纹识别的工作过程为,系统采集说话人的声纹信息并将其录入数据库,当说话人再次说话时,系统会采集这段声纹信息并自动与数据库中已有的声纹信息做对比,从而识别出说话人的身份。

相比于传统的身份识别方法(如钥匙、证件),声纹识别具有抗遗忘、可远程的鉴权特点,在现有算法优化和随机密码的技术手段下,声纹也能有效防录音、防合成,因此安全性高、响应迅速且识别精准。

同时,相较于人脸识别、虹膜识别等生物特征识别技术,声纹识别技术具有可通过电话信道、网络信道等方式采集用户的声纹特征的特点,因此其在远程身份确认上极具优势。

目前,声纹识别技术有声纹核身、声纹锁和黑名单声纹库等多项应用案例,可广泛应用于金融、安防、智能家居等领域,落地场景丰富。

5. 智能客服机器人

智能客服机器人是一种利用机器模拟人类行为的人工智能实体形态,它能够实现语音识别和自然语义理解,具有业务推理、话术应答等能力。

当用户访问网站并发出会话时,智能客服机器人会根据系统获取的访客地址、IP和访问路径等,快速分析用户意图,回复用户的真实需求。同时,智能客服机器人拥有海量的行业背景知识库,能对用户咨询的常规问题进行标准回复,提高应答准确率。

智能客服机器人广泛应用于商业服务与营销场景,为客户解决问题、提供决策依据。同时,智能客服机器人在应答过程中,可以结合丰富的对话语料进行自适应训练,因此,其在应答话术上将变得越来越精确。

随着智能客服机器人的垂直发展,它已经可以深入解决很多企业的细分场景下的问题。比如电商企业面临的售前咨询问题,对大多数电商企业来说,用户所咨询的售前问题普遍围绕价格、优惠、货品来源渠道等主题,传统的人工客服每天都会对这几类重复性的问题进行回答,导致无法及时为存在更多复杂问题的客户群体提供服务。

而智能客服机器人可以针对用户的各类简单、重复性高的问题进行解答,还能为用户提供全天候的咨询应答、解决问题的服务,它的广泛应用也大大降低了企业的人工客服成本。

6. 智能外呼机器人

智能外呼机器人是人工智能在语音识别方面的典型应用,它能够自动发起电话外呼,以语音合成的自然人声形式,主动向用户群体介绍产品。

在外呼期间,它可以利用语音识别和自然语言处理技术获取客户意图,而后采用针对性话术与用户进行多轮交互会话,最后对用户进行目标分类,并自动记录每通电话的关键点,以成功完成外呼工作。

从2018年年初开始,智能外呼机器人呈现出喷井式兴起状态,它能够在互动过程中不带有情绪波动,并且自动完成应答、分类、记录和追踪,助力企业完成一些烦琐、重复和耗时的操作,从而解放人工,减少大量的人力成本和重复劳动力,让员工着力于目标客群,进而创造更高的商业价值。当然智能外呼机器人也带来了另一面,即会对用户造成频繁的打扰。

基于维护用户的合法权益,促进语音呼叫服务端健康发展,2020年8月31日国家工信部下发了《通信短信息和语音呼叫服务管理规定(征求意见稿)》,意味着未来的外呼服务,无论人工还是人工智能,都需要持证上岗,而且还要在监管的监视下进行,这也对智能外呼机器人的用户体验和服务质量提出了更高的要求。

7. 智能音箱

智能音箱是语音识别、自然语言处理等人工智能技术的电子产品类应用与载体,随着智能音箱的迅猛发展,其也被视为智能家居的未来入口。究其本质,智能音箱就是能完成对话环节的拥有语音交互能力的机器。通过与它直接对话,家庭消费者能够完成自助点歌、控制家居设备和唤起生活服务等操作。

支撑智能音箱交互功能的前置基础主要包括将人声转换成文本的自动语音识别(Automatic Speech Recognition,ASR)技术,对文字进行词性、句法、语义等分析的自然语言处理(Natural Language Processing,NLP)技术,以及将文字转换成自然语音流的语音合成技术(Text To Speech,TTS)技术。

在人工智能技术的加持下,智能音箱也逐渐以更自然的语音交互方式创造出更多家庭场景下的应用。

8. 个性化推荐

个性化推荐是一种基于聚类与协同过滤技术的人工智能应用,它建立在海量数据挖掘的基础上,通过分析用户的历史行为建立推荐模型,主动给用户提供匹配他们的需求与兴趣的信息,如商品推荐、新闻推荐等。

个性化推荐既可以为用户快速定位需求产品,弱化用户被动消费意识,提升用户兴致和留存黏性,又可以帮助商家快速引流,找准用户群体与定位,做好产品营销。

个性化推荐系统广泛存在于各类网站和App中,本质上,它会根据用户的浏览信息、用户基本信息和对物品或内容的偏好程度等多因素进行考量,依托推荐引擎算法进行指标分类,将与用户目标因素一致的信息内容进行聚类,经过协同过滤算法,实现精确的个性化推荐。

9. 医学图像处理

医学图像处理是目前人工智能在医疗领域的典型应用,它的处理对象是由各种不同成像机理,如在临床医学中广泛使用的核磁共振成像、超声成像等生成的医学影像。

传统的医学影像诊断,主要通过观察二维切片图去发现病变体,这往往需要依靠医生的经验来判断。而利用计算机图像处理技术,可以对医学影像进行图像分割、特征提取、定量分析和对比分析等工作,进而完成病灶识别与标注,针对肿瘤放疗环节的影像的靶区自动勾画,以及手术环节的三维影像重建。

该应用可以辅助医生对病变体及其他目标区域进行定性甚至定量分析,从而大大提高医疗诊断的准确性和可靠性。另外,医学图像处理在医疗教学、手术规划、手术仿真、各类医学研究、医学二维影像重建中也起到重要的辅助作用。

10. 图像搜索

图像搜索是近几年用户需求日益旺盛的信息检索类应用,分为基于文本的和基于内容的两类搜索方式。传统的图像搜索只识别图像本身的颜色、纹理等要素,基于深度学习的图像搜索还会计入人脸、姿态、地理位置和字符等语义特征,针对海量数据进行多维度的分析与匹配。

该技术的应用与发展,不仅是为了满足当下用户利用图像匹配搜索以顺利查找到相同或相似目标物的需求,更是为了通过分析用户的需求与行为,如搜索同款、相似物比对等,确保企业的产品迭代和服务升级在后续工作中更加聚焦。

七、人工智能应用技术?

培养掌握人工智能基础专业理论知识、应用技术,具备人工智能技术应用开发、系统管理与维护等能力,从事人工智能相关的应用开发、系统集成与运维、产品销售与咨询、售前售后技术支持等工作的高素质技术技能人才。

人工智能技术应用是中国普通高等学校专科专业。

人工智能产业及其应用相关的企事业单位:在人工智能技术应用开发、系统运维、产品营销、技术支持等岗位群,从事人工智能应用产品开发与测试、数据处理、系统运维、产品营销、技术支持等工作。

八、人工智能及其应用?

目前人工智能应用领域比较多,具体如下:

机器人领域:人工智能机器人,如RET聊天机器人,它能理解人的语言,用人类语言进行对话,并能够用特定传感器采集分析出现的情况调整自己的动作来达到特定目的

语言识别领域:该领域其实与机器人领域有交叉,设计的应用是把语言和声音转换成可处理的信息,如语音开锁、语音邮件以及未来的计算机输入等方面

图像识别领域:利用计算机进行图像处理、分析和理解,以识别各种不同模式的目标和对象的技术;例如人脸识别,汽车牌号识别等。

九、人工智能最早应用实践?

人工智能的历史:复制人类思维

开发能够模仿人类认知的机器的梦想可以追溯到几个世纪前。在19世纪90年代,像H.G. Wells这样的科幻作家开始探索机器人和其他机器的概念,这些机器像人类一样思考和行动。

深度学习。这种方法依靠人工神经网络模拟来近似人脑的神经。深度学习系统对于发展计算机视觉、语音识别、机器翻译、社会网络过滤、电子游戏、医学诊断等具有特别重要的价值。

十、人工智能芯片如何应用?

人工智能芯片可以应用于各种领域,包括以下几个方面:

1. 机器学习:人工智能芯片可以加快训练和推理过程,提高机器学习模型的性能和效率。它们可以处理大量的数据并进行实时决策,能够在较短的时间内识别模式、学习规律,提供更准确的预测和分析。

2. 计算机视觉:人工智能芯片可以用于图像和视频处理。通过深度学习算法,芯片能够从图像和视频中提取特征、识别物体、实现目标检测、人脸识别等功能。这些应用包括安防监控、自动驾驶、医学影像分析等。

3. 自然语言处理:人工智能芯片可以处理和理解人类语言,包括语音识别、语义理解、机器翻译等任务。这些芯片可以用于智能助理、智能客服、语音识别输入等应用。

4. 机器人和自主系统:人工智能芯片可用于控制和管理机器人和自主系统。通过集成感知、决策和执行功能的芯片,机器人和自主系统可以感知周围环境、做出决策、执行任务,实现自主导航、智能控制等功能。

5. 联网设备和物联网:人工智能芯片可以嵌入到各种联网设备中,使其具备智能化的能力。通过与云端的联动,这些设备可以进行数据分析、智能控制,实现智能家居、智慧城市等应用。

总而言之,人工智能芯片在各个领域都有广泛的应用,能够为各种智能化系统和设备提供高效的处理能力和智能决策能力。

无法在这个位置找到: article_footer.htm