一、中国高端医疗设备研究进展如何?
中国高端医疗设备研究在近年来一直保持着快速的发展态势,成为了医疗器械产业中的重要组成部分。以下是近期一些中国高端医疗设备研究进展的例子:
1. 人工智能辅助诊断:中国一些企业和医疗机构正在开发使用人工智能的医疗诊断系统。这些系统可以帮助医生更准确地诊断各种疾病,例如肺癌、乳腺癌的诊断等,将医学影像数据与临床资料结合起来进行分析,减少误诊率,提高治疗效果。
2. 超声多模态影像诊断仪器:中国某些厂商正在开发超声多模态影像诊断仪器,采用先进的光学成像技术,能够在同一设备上进行多种医学影像的采集和处理。这些仪器将有望提高医生的工作效率和诊断精度。
3. 电声共振成像仪:中国科学家发明了一种新型的电声共振成像技术,可以在非接触的情况下对人体内部器官的活动进行高分辨率成像。这项技术可应用于许多领域,例如心血管疾病和神经科学等。
总体来说,中国高端医疗设备研究正朝着更为高效、精确的方向发展,有望为全球医疗器械产业做出更大的贡献。
二、知网中如何看研究进展?
可通过以下几种方式了解所研究领域进展
第一,搜索综述性文章,在一般搜索框内输入领域关键词与研究现状,例如“失败学习的研究现状”、“失败学习的研究述评”。
第二,搜索最新的博士、硕士论文,在这些论文的研究综述、理论基础部分会对所在领域的研究现状进行详细的介绍。
第三,搜索领域学术大牛的文章,他们一般会对领域前沿进行及时追踪,发表综述性文章。可以在高级搜索中检索“作者姓名”+“作者单位”,获取相关文献。
三、世界各国反物质研究进展如何?
反物质是一种假想的物质形式,在粒子物理学里,反物质是反粒子概念的延伸,反物质是由反粒子构成的,如同普通物质是由普通粒子所构成的。物质与反物质的结合,会如同粒子与反粒子结合一般,导致两者湮灭,且因而释放出高能光子或伽玛射线。1932年由美国物理学家卡尔·安德森在实验中证实了正电子的存在。随后又发现了负质子和自旋方向相反的反中子。英国《自然》杂志网站2010年11月17日发布报告,欧洲研究人员在科学史上首次成功“抓住”微量反物质。
概念
自然界纷呈多样的宏观物体还原到微观本源,它们都是由质子、中子和电子所组成的。这些粒子因而被称为基本粒子,意指它们是构造世上万物的基本砖块,事实上基本粒子世界并没有这么简单。在30年代初,就有人发现了带正电的电子,这是人们认识反物质的第一步。到了50年代,随着反质子和反中子的发现,人们开始明确地意识到,任何基本粒子都在自然界中有相应的反粒子存在。
正电子、负质子都是反粒子,它们跟通常所说的电子、质子相比较,质量相等但电性相反。科学家设想在宇宙中可能存在完全由反粒子构成的物质,也就是反物质。
电子和反电子的质量相同,但有相反的电荷。质子与反质子也是这样。
那么中子与反中子的性质有什么差别?其实粒子实验已证实,粒子与反粒子不仅电荷相反,其他一切可以相反的性质也都相反。这里我们讨论一下重子数的概念。
质子与中子被统称为核子。人们从核现象的研究发现,质子能转化为中子,中子也能转化为质子,但在转化前后,系统的总核子数是不变的。50年代起的粒子实验表明,还有很多种比核子重的粒子,它们与核子也属同一类,这类粒子于是被改称为重子,核子仅是其最轻的代表,一般的规律是:当粒子通过相互作用而发生转化,系统中的重子个数是不会改变的。
由于重子数的守恒性,两个质子相碰是不会产生一个包含三个重子的系统的,那么反核子应当怎么产生?实验表明,反核子总是在碰撞中与核子成对地产生的。例如
p+p → N+N+N+N'+若干 π介子
其中N代表质子或中子,N'代表反质子或反中子。反核子一旦产生,它常很快与周围的某个核子再相碰而成对地湮灭。例如
N+N' → 若干 π介子
按照这种说法推论,在宇宙的某个地方,一定存在着反物质世界。如果反物质世界真的存在的话,那么,它只有不与物质会合才能存在。可物质与反物质怎样才能不会合?反物质在宇宙何方?这还是待解之迷。
对于比核子更重的重子,情况完全一样。反重子也总是与重子成对地产生,成对地湮灭的。这些经验使人们认识到,重子数的守恒规律需要重新认识。
现在人们把重子数B当作描述粒子性质的一种电荷。正反重子不仅有相反的电荷,而且也有相反的重子数B。令任一个重子都具有重子数B=+1,则任一个反重子都具有B=-1。介子、轻子和规范子等非重子不具有重子数,即它们有B=0。重子数的守恒规律可表述为:任何粒子反应都不会改变系统的总重子数B。这表述既反映了不涉及反粒子时的重子个数不变,也概括了反粒子与粒子的成对产生和湮灭。现在我们容易理解中子和反中子的区别了,它们具有相反的重子数B,因此反中子能与核子相碰导致湮灭,而中子则不能。
此外,人们还类似地发现了轻子数的守恒性。中微子虽不带电,也不具有重子数,但它与反中微子具有相反的轻子数。按轻子数的守恒性,中微子与反中微子的物理行为也是很不一样的,实验还表明,介子数和规范粒子数是不具有守恒性的。这样我们看到,电荷只是粒子的一种属性,另外还有用重子数和轻子数等物理量刻画的其他属性。正反粒子的这些属性也都是相反的。
1928年,英国青年物理学家狄拉克从理论上首次论证了正电子的存在。这种正电子除了电性和电子相反外,一切性质和电子相同。1932年,美国物理学家安德逊在实验室中发现了狄拉克所预言的正电子。1955年,美国物理学家西格雷等人用人工的方法获得了反质子。此后人们逐渐认识到,不仅质子和电子,所有的微观粒子都有各自的反粒子。
这一系列科学成果使人们日渐接近反物质世界。然而问题并不那么简单。首先,在地球上很难发现反物质。因为粒子与反粒子碰到一起,就像冰块遇上火球一样,或者一起消失,或者转变为其他粒子。所以在地球上,反物质一旦碰上其它物质就会被兼并掉。其次,制造反物质相当困难而且耗费巨大,需要如SSC或LHC之类的高科技仪器,并且即使制造出反物质,也难以保存,因为地球上万物都由物质构成。
我们周围的宏观物质主要由重子数为正的质子和中子所组成。因此,这样的物质被称为正物质,由他们的反粒子组成的物质相应地叫反物质。从粒子物理的角度讲,正粒子和反粒子的性质几乎完全对称,那么为什么自然界有大量的正物质,而却几乎没有反物质呢?这正是我们现在要讨论的问题。
反物质就是正常物质的镜像,正常原子由带正电荷的原子核构成,核外则是带负电荷的电子。但是,反物质的构成却完全相反,它们拥有带正电荷的电子和带负电荷的原子核。从根本上说,反物质就是物质的一种倒转的表现形式。爱因斯坦曾经根据相对论预言过反物质的存在:“对于一个质量为m,所带电荷为e的物质,一定存在一个质量为m,所带电荷为-e的物质(即反物质)”。按照物理学家假想,宇宙诞生之初曾经产生等量的物质与反物质,而两者一旦接触便会相互湮灭抵消,发生爆炸并产生巨大能量。然而,出于某种原因,当今世界主要由物质构成,反物质似乎压根不存在于自然界。正反物质的不对称疑难,是物理学界所面临的一大挑战。
特点
在多数理论家看来,宇宙中正反物质的大尺度分离是不可能发生的。因此,三千万光年的范围内没有反物质天体,已说明宇宙中大块的反物质是不存在的。但是理论家也相信,极早期宇宙中正反物质应当等量。这样,需要做的事是寻找物理机理,来说明宇宙如何才能从正反物质等量的状态过渡到正物质为主的状态。这里,理论家也遇到了非常尖锐的困难。
按照大爆炸理论,甚早期宇宙介质的温度非常高。粒子间的热碰撞会成对地产生任何基本粒子。当粒子的成对湮灭与成对产生达到统计平衡,宇宙介质就是一切基本粒子构成的混合气体,且任一种稳定或不稳定的粒子都有接近相等的数密度。至于重子和反重子的数目是否严格相等,这不是由物理规律决定,而是由初条件决定的。
在理论家看来,在最初的宇宙中正反粒子应当等量才自然。但是易于看出,若这想法是对的,重子的守恒性立即会给出与事实明显不符的推论。当宇宙的膨胀使气体温度降至10 ^13 K以下,由于粒子的热动能已不够,热碰撞成对产生重子已不可能。于是湮灭过程将使正反重子的数目同时迅速下降。最终,宇宙中将既没有重子,也没有反重子。这显然不是真实宇宙的情景。事实上,今天宇宙中光子的数目最多.重子的数目是它的十万万分之一左右,反重子的数目很可能还要低许多量级。如果重子数B的守恒性是严格的物理规律,要宇宙从正反重子等量的状态演化成今天这样的状态是不可能的。然后,理论家又不能相信在原始的宇宙中重子就会多于反重子,那么问题的出路在哪儿?
重子数B的守恒性肯定是严格成立的物理规律吗?至今难以计数的粒子实验确实没有发现过一个破坏重子数守恒的事例,但是这并不说明它一定是严格的规律。回顾一下化学的发展可作借鉴。化学反应是元素的重新组合。经验表明,在重组合的前后,每一种元素的原子数是守恒的,无数的化学实践表明没有例外。想把汞变金的炼金术的失败,更从反面提供了证明。但是有了核反应的知识后人们已清楚知道,汞变成金完全可能,关键在于要有高的能量让原子核发生变化。化学反应是在粒子能量小于1eV的条件下进行的,这条件下原子核不能相互接触,核反应就不能发生。若过程中粒子的能量超过1MeV,原子核之间就能充分接近,那么原子核就能变化了,原子数的守恒性也就随之破坏了。由此看来,原子数在化学过程中的守恒不是偶然的,但是它仅是低能下的唯象规律,而不是普遍成立的自然规律。借鉴同样的道理,重子数的守恒性也可能仅是一定能量范围的唯象规律,而不是普遍成立的。当粒子的能量更高,重子数的守恒性完全可能会不成立,这正是今天的理论家看到的出路。
从70年代中期起,粒子物理中由弱电统一理论的成功,掀起了研究相互作用大统一的潮流。按这样的理论,高能下发生破坏重子数守恒的过程是自然的事,粒子物理中的这一潮流与宇宙学解决正反物质不对称疑难的需要不谋而合了。于是这疑难问题作为粒子物理和宇宙学的交叉领域而得到了很多进展。人们已清楚,要从正反物质等量的早期宇宙演化出今天正物质为主的状态,除了重子数守恒须可能被破坏外,正反粒子的相互作用性质还必须有适量的差别。由于超高能下的粒子物理规律至今还没有被掌握,因此实际上自然界是否确实具备这两个要素,尚不能回答,人们正在试探和摸索之中,如果今天的宇宙中只有正物质天体是事实,问题是否能按这思路得到解决也还并不完全肯定。
总之,为彻底揭开宇宙反物质之谜,前面还有漫长路要走。人们已能预料,这问题的解决不仅对认识宇宙是重要的,它对物理学的影响也将是很深刻的。
下面是小说《天使与魔鬼》(丹·布朗著)中提到的一些:
反物质是人类目前所知的威力最大的能量源。它能百分之百的效率释放能量(核裂变的几率是百分之一点五)。反物质不造成污染,也不产生辐射,一小滴反物质就可以维持整个纽约城全天的动能。
先别过于乐观,其中可隐藏着危机……
反物质极不稳定,它可以把接触到的任何东西化为灰烬……连空气也概莫能外。仅仅一克反物质就相当于20万吨当量的核炸弹的能量.
当物质与反物质接触,原子最外层的电子因为所带电荷相反而抵消,原子核中的质子也因同样的原因相互抵消,而反中子因磁性与中子相反而与中子进行强烈的碰撞发出惊人的能量。爱因斯坦曾计算过这种完整的能量释放比率,跟这种完全的能量释放相比,核裂变就像划燃一根安全火柴一样微不足道。
质疑是否存在反物质
从哲学角度来讲,这个问题很容易回答。我国古代的太极图似乎也暗示了它的存在,部分天文学家也认为有存在的可能,但现代天文学还拿不出令人信服的证据。否定反物质的人很多,美国宇宙学家施拉姆(Schramm)说:“大多数理论家的直觉,不存在反物质。这意味着如果你找到它,那是一个伟大的发现,证明这些理论家都是错误的。但是最大的可能是,这意味着你找不到它。”
目前,由丁肇中主持的这项研究已有16个国家的科学家参与其中,投入的资金更是高达1000多亿美元。许多科学家表示:只要能发现宇宙反物质的存在,那么这将是当之无愧的诺贝尔奖。该探测器已于2005年发射升空并永久停留在太空,东南大学还将建立一个数据接收分析中心和培训中心作为配套项目。丁肇中认为,如果反物质确实存在,当正物质与反物质碰撞时可以产生巨大的能量。他现在所主持的“寻找宇宙中的暗物质和反物质”的研究已进行多年,目前已取得一些重要成果。“但是,从这一领域发展的历史来看,人们要有思想准备,也许我们会发现意想不到的东西,与原先想研究的东西毫无关系。”丁肇中很慎重地表示。
从拉普拉斯大预言谈起
德科学家认为黑洞撕裂恒星产生反物质
天体有巨大的引力,在巨大的引力作用下,会发生各类反应,并发光发热。物极必反,拉普拉斯(Laplace)曾经大胆预言:宇宙中最大的天体有可能是看不见的。当引力随质量增大时,天体会变成一个一无所有的区域,既不发热,也不发光,现在我们称之为“黑洞”(Black Hole)。因此宇宙更多的是由不可见的暗物质或反物质组成,我们肉眼和天文仪器所能“看”到的只是以恒星或以星系形式存在的宇宙结构,这些物质只占宇宙总体的10%,90%的物质是以暗物质或其他结构形式存在。显而易见,对可见物质的巨大引力的存在表明了暗物质或反物质的存在。可是我们用光无法探测到,用红外线、紫外线和X光都无法探觅到它们的足迹。
同样的,对应着现存的星系结构体系,有由相反的反宇宙结构体系存在吗?其实早在1898年,一位英国物理学家就提出:与物质存在一样,有一个镜像对应的反物质存在。受当时科学水平和试验条件的限制,这个反物质概念没有一点事实依据,因此在宇宙深处存在由反物质组成的宇宙恒星云只能属于纯粹意义上的假说。
1997年科学家宣布发现了“银心反物质喷泉”极大地震撼了整个物理学界,使科学家们寻找反物质的热情一下子高涨起来。
1998年6月3日,由丁肇中教授发起的带有全球意义的寻找宇宙反物质事件,使得这一领域一度成为全球科学家最为关注的焦点。
是否存在反物质天体
粒子实验已证实,正反粒子的强作用和电磁作用性质完全一样,因此反质子和反中子也能结合成带负电的反原子核,反原核和反电子结合在一起,就能组成反原子。我们的正物质世界有多少种原子,相应在反物质世界中也能有多少种反原子,而且它们在结构上将是完全没有区别的,延伸起来讲,大量反原子可以构成反物质的恒星和星系。如果宇宙中正反物质为等量,那么这样的反恒星和反星系就应当存在。因此这给天文学家提出了一个深刻的问题:天上有反恒星和反星系吗?
要由观测来分辨远处星系由物质构成或反物质构成并不容易,至今的天文观测只是接收远处天体所放出的光子。原则上,正物质天体若辐射光子,那么同样的反物质天体应当辐射反光子。但是光子是纯中性的粒子,因此光子与反光子是同一种粒子。这样,天文学家通过可见光、射电、X射线或 γ 射线观测,原则上无法区分他的目的物是由物质构成还是由反物质构成。恒星和星系除了辐射光子外,它们还辐射中微子。中微子与反中微子很不一样,如果天文学家能接收中微子,那么他就能区分物质天体与反物质天体。可惜中微子与任何物质的相互作用都很微弱,造一个能接收它们的仪器很困难。今天用这办法来区分物质天体或反物质天体还办不到。那么让我们问:与我们最邻近的太阳或月亮会是由反物质组成吗?
月亮是离我们最近的天体,由地面出发的宇航员已在月球上登陆过。如果月球是由反物质组成的,那么在那位宇航员与月球接触时,湮灭过程早已把他转化为介子了。这是直接证据,表明月亮是正物质天体。至于太阳,那是人类没有可能登陆的地方。那么怎么才能知道它不是由反物质组成的呢?太阳表面的气体很热,其中热运动速度较快的原子的速度已超过了太阳表面的逃逸速度,这就是太阳风的起因,若太阳是反物质恒星,太阳风就由反原子组成,它吹到行星上,就会和行星的正原子相湮灭。于是正物质组成的行星会逐渐消失掉,这种消失过程没有发生,就证明了整个太阳系中没有反物质天体。这样,如果要存在反物质天体,它至少应在太阳系之外。
1979年,美国科学家把一个有60层楼高的巨大气球放到离地面35公里的高空,气球上载有一批十分灵敏的探测仪器,结果,它在高空猎取了28个反质子。这是在地球以外第一次发现的反物质。除此之外,还在星际空间发现了反物质流 把眼光放远到整个银河系,要问的是:在这个由千亿个恒星构成的系统中,会有一部分是反恒星吗?今天人们也已能肯定地回答:不会有。我们从地面上能接收到太空中飞行的宇宙射线。观测统计表明,宇宙射线粒子中反质子仅是质子的万分之几,并且这少量的反质子是高能粒子碰撞的次级产物,而不是原始的,此外宇宙射线中有很少的 α 粒子(即氦核),但是反 α 粒子却一个也没有发现过,这些事实说明原初的宇宙射线是由正物质组成的。如果银河系中有反物质恒星,那么宇宙射线粒子将与它碰撞而发生湮灭。湮灭产生的 π 0 介子将很快衰变而成γ 光子。因此这种湮灭过程是能够通过γ 射线的观测来发现的。正是没能找到湮灭过程所放出的很有特征性的 γ 光子,使人们知道,银河系中并没有反恒星的存在,整个银河系都是由正物质组成的。
我们的宇宙是由大量星系构成的。若在远处有反物质组成的星系,原则上也能用同样的道理来发现。星系之间并不是真空,而是弥漫着很稀薄的气体。因此,若既有正物质星系又有反物质星系,那么正反物质必会相遇,相遇处必会有湮灭过程发生。人们着意地寻找了相应的 γ 射线,而没有找到过。于是得出结论:在三千万光年的范围内不会有巨大的反物质星系存在。若在更远的地方有这种湮灭发生,由于它的信号太弱而没有被发现是不能排除的。所以上述结论是今天的观测能力所能给出的回答。
四、透皮给药制剂研究进展如何?
中药透皮给药是以中医外治为理论基础的一种给药方式,国际医学界对这门科学也有深入的研究,称这一独特的给药方式为透皮给药系统(trandermal therapeutic systems,TTS)。它在皮肤表面给药,通过毛孔扩张,使药物以恒定速度(或接近恒定速度)通过皮肤各层,进入体循环产生全身或局部治疗作用。它是无创伤性给药的新途径,其优点表现为:药物吸不受消化道内pH、食物和药物在肠道移动时间等复杂因素影响;避免药物在肠胃、肝、肾等器官的不必要的代谢;可持续控制给药速度;用药部位在体表,中断给药方便,是一种无副作用、安全、有效的治疗方法。中国医药学家对经皮给药早有认识,在中国的医学典籍中收集了大量的用于局部和治疗内科疾病的膏药处方。近几年来各种形式的中药外用治疗呼吸系统、心血管系统、胃肠道等内科疾病取得了一定成绩。目前中国正以现代科学技术方法进行研究使之提高,同时对TTS的研究也作了大量的工作。硝酸甘油、东莨菪碱、可乐定等药物的TTS制剂已获准生产,并对多种药物如:激素类(睾酮、18一左炔诺酮)、止痛药(度冷丁、酮洛酸)、戒烟(毒)药(尼古丁)、呼吸系统(茶碱)、心血管系统(硝苯地平、噻吗洛尔)等药物的TTS进行了研究。 自1981年美国上市第一个用于治疗运动病的TTS—东莨菪碱贴剂以来,现已有多种透皮吸收制剂,如:硝酸甘油、雌二醇、芬太尼、可乐定、睾酮、尼群地平、噻吗洛尔等TTS应用于临床受到普遍欢迎。 近年来透皮给药制剂已突破了传统的单一贴膜剂型式。国外已研制出包括 “离子电渗器”、“微针方列”、“凝胶剂”、“超 声给药器”和“化学扩散给药”等一系列新型 透皮给药制剂。
五、符合人工智能描述的是?
人工智能(英文名:Artificial Intelligence,英文缩写:AI)。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能亦称智械、机器智能,指由人制造出来的机器所表现出来的智能。通常人工智能是指通过普通计算机程序来呈现人类智能的技术。通过医学、神经科学、机器人学及统计学等的进步,有些预测则认为人类的无数职业也逐渐被人工智能取代。
六、关于人工智能的描述正确的是?
人工智能是利用数字计算机或者数字计算机控制的机器模拟、延伸和扩展人的智能,感知环境、获取知识并使用知识获得最佳结果的理论、方法、技术及应用系统。
让机器实现人的智能,一直是人工智能学者不断追求的目标,不同学科背景或应用领域的学者,从不同角度,用不同的方法,沿着不同的途径对智能进行了探索
七、人工智能产品的描述正确的是?
自动感知,自动驾驶,自动操作,物联网
八、关于人工智能描述正确的说法是?
人工智能是对人的意识、思维的信息过程的模拟。但不是人的智能,能像人那样思考、也可能超过人的智能。但是这种会自我思考的高级人工智能还需要科学理论和工程上的突破。从诞生以来,人工智能理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。正因为如此,人工智能的应用方向才十分之广。
为了对人工智能的定义进行讨论,以便更深刻地理解人工智能
九、强人工智能的研究进展与前景
人工智能(Artificial Intelligence,AI)是近年来备受瞩目的技术领域,而强人工智能(Strong AI)更是吸引了广泛关注。强人工智能的概念旨在构建具有与人类智能相当或超越人类智能的智能系统,其影响力和潜力不可忽视。
1. 强人工智能的定义
强人工智能是指能够像人类一样感知和理解世界,具备自主学习和推理能力,以及意识和思维能力的智能系统。与之相对的是弱人工智能(Weak AI),弱人工智能只能执行特定任务,不能超越其预定的功能范围。
2. 强人工智能的研究进展
强人工智能的研究涉及到多个学科领域,如机器学习、自然语言处理、计算机视觉等。目前,强人工智能的研究已经取得了显著进展。
在自主学习能力方面,强人工智能可以通过大规模数据分析和深度神经网络等技术实现自主的学习和知识获取,从而不仅可以应对各种不同的任务,还能不断提高自己的工作效率和准确性。
在推理和决策能力方面,强人工智能可以基于丰富的知识库和先进的逻辑推理算法进行复杂问题的分析和决策。其推理能力不仅可以解决现有的问题,还能对未知情况进行预测和推演。
在意识和思维能力方面,强人工智能的研究更具挑战性。目前,尚未找到完全模拟人类意识和思维的有效方案,但研究人员正在朝着这一目标努力,力求理解人类智能的本质,探索强人工智能的更大潜力。
3. 强人工智能的前景与挑战
强人工智能的发展对社会和经济都将带来深远的影响。它有潜力在医疗、交通、金融等领域发挥重要作用,提高工作效率,降低成本,推动科学技术的进步。
然而,强人工智能的发展也面临一些挑战。其中之一是伦理问题,如隐私保护、人工智能的道德责任等。另外,强人工智能的安全问题也需要引起足够重视,防止其被恶意利用和对系统的不当干预。
结语
强人工智能的研究和发展仍处于探索阶段,但其前景和潜力无疑引人注目。通过不断努力,研究者们正致力于解决强人工智能的技术难题,并警惕应对相关的伦理和安全风险。
感谢您阅读本文,相信通过本文,您对强人工智能的研究进展与前景有了更深入的了解。
十、如何描述大米?
大米食用品质的优劣可以通过大米蒸煮品质实验进行评价。
大米主要是指早籼米(机米)、晚籼米、早粳米、晚粳米、糯米等。
优质大米,米粒饱满,洁净,有光泽,纵沟较浅,掰开米粒其断面呈半透明白色。闻之有清新气味,蒸熟后米粒油亮,有嚼劲,气味喷香。
劣质大米,米粒不充实,瘦小,纵沟较深,无光泽,掰开米粒断面残留褐色或灰白色。发霉的米粒多呈绿色、黄色、灰褐色、赤褐色,且光泽差、组织疏松,有霉味或其它异味。吃起来口味淡,粗糙,粘度也小。这也是陈米的特征。