一、产业集群和产业联盟的关系?
一.产业联盟产业集群的联系
产业联盟以及企业之间各和组织是在产业集群的发展过程中形成的。发展区域经济,各个企业、集团之间时常会有存在一些 共性问题和一些不能解决的问題.这就需要一个联盟来组织协调,产业联盟在这种条件下应运面生。产业联盟的范围很广:为了能及时有效的处理各种问题,它的下面有5个系统分别是:研发合作产业联盟,技术标准产业联盟,产业链合作产业联盟,市场合作产业联盟,社会规则合作产业联盟。
二、行业和产业的关系?
行业,一般是指其按生产同类产品或具有相同工艺过程或提供同类劳动服务划分的经济活动类别,如饮食行业、服装行业、机械行业、金融行业、移动互联网行业等。产业是指由利益相互联系的、具有不同分工的、由各个相关行业所组成的业态总称,尽管它们的经营方式、经营形态、企业模式和流通环节有所不同,但是,它们的经营对象和经营范围是围绕着共同产品而展开的,并且可以在构成业态的各个行业内部完成各自的循环。
三、文化和产业的关系?
我国文化建设发展的一个突出特点就是区分了文化事业与文化产业各自的属性,使其各归其位,各负其责。
四、人工智能中如何表示实体之间的关系?
通常有以下几种知识表示方法及应用特点:
1. 一阶谓词逻辑表示方法
利用一阶逻辑公式描述事物对象、对象性质和对象间关系。这种方法是将自然语句写成逻辑公式,采用演绎规则和归结法进行严格的推理,能够证明一个新语句是由已知正确的语句推导出来的,即可断定这个新的语句(新知识)是正确的。知识库可以视为一组逻辑公式的集合,增加或删除逻辑公式即是对知识库的修改。
逻辑表示法有明确和规范的规则构造复杂事物,结构清晰,可以分离知识和处理知识的程序。具有完备的逻辑推理方法,不局限于具体领域,有较好的通用性。缺点是适合于事物间确定的因果关系,难于表示过程和启发式知识,推理过程中可能产生组合爆炸,推理效率较低。
2. 产生式表示方法
根据串代替规则提出的一种计算模型,模型中的每条规则称为产生式。产生式的基本形式P→Q ,P是产生式的前提(前件),Q是一组结论或操作(后件),如果前提P满足,则可推出结论Q或执行Q所规定的操作。
产生式可以表示人类心理活动的认知过程,已经成为人工智能中应用最多的一种知识表示模式,许多成功的专家系统都是采用产生式知识表示方法。
3. 语义网络表示方法
语义网络是一种用实体及其及关系来表达知识的有向图。结点代表实体,表示各种事物、概念、属性、状态、事件和动作等;弧线代表语义关系,表示它所连结的两个实体之间的联系。用语义网络表示知识以求解问题,主要包括两部分,一部分是由语义网络构成的知识库,另一部分是用于问题求解的推理机制。语义网络的推理过程主要有继承和匹配两种。
主要优点:结构性、联想性,自索引性,自然性;主要缺点:非严格性,复杂性。
4. 框架表示方法
框架表示法是在框架理论的基础上发展起来的一种结构化知识表示方法。框架理论是对理解视觉、自然语言对话和其它复杂行为的一种“框架”认识:人们对现实世界中各种事物的认识都是以一种类似于框架的结构存储在记忆中的,当遇到一个新事物时,就从记忆中找出一个合适的框架,并根据新的情况对其细节加以修改、补充,从而形成对这个新事物的认识。
当事物的知识比较复杂时,需要通过多个框架之间的横向或纵向联系形成一种框架网络。框架系统的问题求解主要是通过对框架的继承、匹配与填槽来实现的。框架表示法的优点:结构性,深层性,继承性,自然性。不足之处:缺乏框架的形式理论,缺乏过程性知识表示,清晰性难以保证。
5. 过程表示方法
过程表示是将有关某一问题领域的知识,包括如何使用这些知识的方法,均隐式地表示为一个求解问题的过程。
主要优点:表示效率高,过程表示法是用程序来表示知识的,可以避免选择和匹配无关的知识,不需要跟踪不必要的路径,从而提高了系统的运行效率。控制系统容易实现:控制机制已嵌入到程序中,控制系统比较容易设计。主要缺点:不易修改和添加新知识,当对某一过程进行修改时,可能影响到其它过程,对系统维护带来不便。
五、产业链和产业之间的关系?
二者定义不同。
产业是社会分工和生产力不断发展的产物。它随着社会分工的产生而产生,并随着社会分工的发展而发展。
产业链是产业经济学中的一个概念,是各个产业部门之间基于一定的技术经济关联,并依据特定的逻辑关系和时空布局关系客观形成的链条式关联关系形态。
六、人工智能和人工智能产业班区别?
1、人工智能的本质
人工智能是相对于人的智能而言的。正是由于意识是一种特殊的物质运动形式,所以根据控制论理论,运用功能模拟的方法,制造电脑模拟人脑的部分功能,把人的部分智能活动机械化,叫人工智能。人工智能的本质是对人思维的信息过程的模拟,是人的智能的物化。尽管人工智能可以模拟人脑的某些活动,甚至在某些方面超过人脑的功能,但人工智能不会成为人类智能而取代人的意识。
2、人工智能与人类思维的本质区别
人工智能是思维模拟,并非人的思维本身,决不能把“机器思维”和人脑思维等同起来,认为它可以超过人脑思维是没有根据的。
(1)人工智能是无意识的机械的、物理的过程。人的智能主要是生理的和心理的过程。
(2)人工智能没有社会性。人类智慧具有社会性。
(3)人工智能没有人类意识特有的能动性和创造能力。人类思维则主动提出新的问题,进行发明创造。
(4)电脑可以代替甚至超过人类的部分思维能力,但它同人脑相比,局部超出,整体不及。智能机器是人类意识的物化,它的产生和发展,既依赖于人类科学技术的发展水平,又必须以人类意识对于自身的认识为前提。因此,从总体上说;人工智能不能超过人类智慧的...意识和人工智能的关系
1、人工智能的本质
人工智能是相对于人的智能而言的。正是由于意识是一种特殊的物质运动形式,所以根据控制论理论,运用功能模拟的方法,制造电脑模拟人脑的部分功能,把人的部分智能活动机械化,叫人工智能。人工智能的本质是对人思维的信息过程的模拟,是人的智能的物化。尽管人工智能可以模拟人脑的某些活动,甚至在某些方面超过人脑的功能,但人工智能不会成为人类智能而取代人的意识。
2、人工智能与人类思维的本质区别
人工智能是思维模拟,并非人的思维本身,决不能把“机器思维”和人脑思维等同起来,认为它可以超过人脑思维是没有根据的。
(1)人工智能是无意识的机械的、物理的过程。人的智能主要是生理的和心理的过程。
(2)人工智能没有社会性。人类智慧具有社会性。
(3)人工智能没有人类意识特有的能动性和创造能力。人类思维则主动提出新的问题,进行发明创造。
(4)电脑可以代替甚至超过人类的部分思维能力,但它同人脑相比,局部超出,整体不及。智能机器是人类意识的物化,它的产生和发展,既依赖于人类科学技术的发展水平,又必须以人类意识对于自身的认识为前提。因此,从总体上说;人工智能不能超过人类智慧的界限。关于电脑能够思维,甚至会超过人的思维,电脑、机器人将来统治人类的观点是完全没有根据的。
3、人工智能产生和发展的哲学意义
(1)人工智能的产生和发展,有力地证明了意识是人脑的机能、物质的属性,证明马克思主义关于意识本质的观点的正确性。
(2)人工智能的产生和发展深化了我们对意识相对独立性和能动性的认识。机器思维即人工智能表明,思维形式在思维活动中对于思维内容具有相对独立性,它可从人脑中分化出来,物化为机械的、物理的运动形式,部分地代替人的思维活动。
(3)随着科学技术的发展,人工智能将向更高水平发展,反过来推动科学技术、生产力和人类智慧向更高水平发展,对人类社会进步将起着巨大的推动作用。
以上是我摘的,我本人不同意以上观点,我认为人工智能它是可以超过人的智能,是由他的物理属性决定的。他的发展不可估量。殊不知人工智能,可以
自我学习, 也可以自我进化,也可以有社会属性。政治上这样说,只不过是
愚弄一些无知的人民。
七、人工智能产业学院和人工智能学院的区别?
①定义不同。
人工智能产业学院主要侧重于培养学生在人工智能领域具备实际应用能力和产业发展需求的专业人才。而人工智能学院则更注重培养学生在人工智能理论、算法和技术方面的深入研究与创新能力。前者更注重实践和应用,后者更注重理论和研究。
②字数不同
八、人工智能和语言的关系?
目前大量的和AI相关的开源库是用C++,Java写的,编程语言和AI似乎没有太大关系。
在AI的理论研究没有大突破的前提下,没有人知道未来的AI技术会是什么样的,所以,也就无法预测哪种语言更适合AI。
另外,肯定很多听过LISP的人在看到这个问题的时候就会脱口而出说LISP更适合AI,然而,就像@虞翔 给的链接里说的那样,人们之所以会以为LISP是最适合AI的,其原因和在LISP被发明出来时,人们对AI的研究有密切联系。当时的计算机大牛们以为依靠基于符号演算的系统,到现在这个时候,强AI一定能够实现呢,而LISP正是最适合符号演算的语言。
九、人工智能产业体系的融合产业有?
AI引领数字生活之外,在金融科技展区,云计算、大数据、区块链、人工智能等作为较为成熟的技术应用,所展示给观众的均是已在行业落地应用并取得卓越科技赋能成效的技术产品。
在建行“AI赋能产业”展区,通过北斗七星人工智能平台、龙眼通项目、普惠金融、乡村振兴、全球撮合家等展项的展示,突出了建行在智能业务场景应用、助力国家“一带一路”倡议落地、助力中小企业和实体经济发展、贯彻落实乡村振兴战略,以及在疫后经济时期为加快构建以国内大循环为主体、国内国际双循环相互促进的新发展格局提供助力的一系列重要成果
十、体育和体育产业的关系?
体育产业发展对体育运动的影响:为竞技体育的普及创造了条件,随着电视技术和通信技术的飞速发展,竞技体育走进了每个家庭,使五大洲的亿万观众都能及时而全面地了解竞技体育,从关注进而演变为参与经济活动,为竞技体育的蓬勃发展提供了良好的氛围。
一名优秀的运动员和他们自身的遗传因素、心理因素以及运动员的天赋有很大关系,这些因素也可以用于现代科技设备进行测定、研究。
通过科学化的选材将有助于提高体育后备人才选拔的成功率,有效帮助预测其未来的竞技能力,确定运动项目,有利于制定完整的个人发展计划。