一、如图所示电路,电源电压U0不变,初始时滑动变阻器的滑片P在最右端,但由于滑动变阻器某处发生断路,合上电
断开时是电源电压,即U0=1.5V, I1 = 0.15A时,电压表读数为U1 = 1.35V, 则:U1 = U0-I1R 得R = 1Ω 变阻器向左5CM处时,变阻器电阻:R1=U1/I1=1.35/0.15=9Ω 变阻器10CM处时,变阻器电阻:R2=U2/I2=1.2/0.3=4Ω 所以变阻器变化5CM电阻为:R1-R2=9-4=5Ω 变阻器最大值时功率最小,即变阻器在最右端时功率最小.可得变阻器在最右端(即变阻器没断时电阻0CM处)为5CM处电阻加变化5CM电阻:RP=R1+5=14Ω 总电阻:RZ=RP+R=14+1=15Ω 功耗为:U0^2/RZ=1.5*1.5/15=0.15W
二、拉伸法杨氏模量的测量实验的误差产生的主要原因有哪些
1、系统误差:
实验过程中,杨氏模量测量仪,一般没有调节成标准状态的功能,因此,测量时基本是在非标准状态下进行,存在着系统误差。
其实,由于标尺基本是平行固定在立柱上,只要底座放置在水平桌面上,标尺就基本铅直,而望远镜和光杠杆平面镜却均为手动调节,常处于倾斜较大的非标准状态
2、偶然误差:
由于偶然的不确定的因素所造成的每一次测量值的无规则的涨落称为偶然误差,其特征是带有随机性,也叫随机误差。
实验时所加砝码是有缺口的,在逐次加砝码时要求砝码口要互相相对放置,如果放置时缺口始终面朝一个方向,就会造成砝码倒塌,测量失败,除此之外取放砝码时一定要轻拿、轻放,稍有震动就会使光杠杆移动,造成测量失败。
扩展资料
杨氏弹性模量是选定机械零件材料的依据之一。杨氏模量的测定对研究金属材料、光纤材料、半导体、纳米材料、聚合物、陶瓷、橡胶等各种材料的力学性质有着重要意义,还可用于机械零部件设计、生物力学、地质等领域。
测量杨氏模量的方法一般有拉伸法、梁弯曲法、振动法、内耗法等,还出现了利用光纤位移传感器、莫尔条纹、电涡流传感器和波动传递技术(微波或超声波)等实验技术和方法测量杨氏模量。
材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数为弹性模量。
意义:弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。
说明:模量的性质依赖于形变的性质。剪切形变时的模量称为剪切模量,用G表示;压缩形变时的模量称为压缩模量,用K表示。模量的倒数称为柔量,用J表示。
参考资料来源:搜狗百科-杨氏模量
三、用电器短路和电源短路怎么区分?
通路、开路和短路是电路的三种状态。其中短路又可分为电源短路和用电器短路两种情况。用一根导线将电源的两极直接连接起来,叫做电源短路。此时电路中的电流很大,会把电源烧坏,因此必须避免电源短路的情况发生。用导线把用电器的两端直接连接起来,叫做用电器短路。常把连在用电器两端的这条导线叫做短路导线。用电器短路时,电流不通过用电器而直接从短路导线中通过。用电器短路的情况,有的时候可以被利用。为了与电源短路相区别,用电器短路也常常被称为短接。
检查电路是否电源短路,可以用“电流流向法”。即按照电流的方向寻找电流的通路,只要其中有一条电流的路径中没有用电器,这个电路就是电源短路。
四、核能的应用,以及未来的用途
核能发电 利用核反应堆中核裂变所释放出的热能进行发电的方式。它与火力发电极其相似。只是以核反应堆及蒸汽发生器来代替火力发电的锅炉,以核裂变能代替矿物燃料的化学能。除沸水堆外(见轻水堆),其他类型的动力堆都是一回路的冷却剂通过堆心加热,在蒸汽发生器中将热量传给二回路或三回路的水,然后形成蒸汽推动汽轮发电机。沸水堆则是一回路的冷却剂通过堆心加热变成70个大气压左右的饱和蒸汽,经汽水分离并干燥后直接推动汽轮发电机。
优点:
1.核能发电不像化石燃料发电那样排放巨量的污染物质到大气中,因此核能发电不会造成空气污染。
2.核能发电不会产生加重地球温室效应的二氧化碳。
3.核能发电所使用的铀燃料,除了发电外,没有其他的用途。
4.核燃料能量密度比起化石燃料高上几百万倍,故核能电厂所使用的燃料体积小,运输与储存都很方便,一座1000百万瓦的核能电厂一年只需30公吨的铀燃料,一航次的飞机就可以完成运送。
5.核能发电的成本中,燃料费用所占的比例较低,核能发电的成本较不易受到国际经济情势影响,故发电成本较其他发电方法为稳定。
缺点:
1.核能电厂会产生高低阶放射性废料,或者是使用过之核燃料,虽然所占体积不大,但因具有放射线,故必须慎重处理,且需面对相当大的政治困扰。
2.核能发电厂热效率较低,因而比一般化石燃料电厂排放更多废热到环境裏,故核能电厂的热污染较严重。
3.核能电厂投资成本太大,电力公司的财务风险较高。
4.核能电厂较不适宜做尖峰、离峰之随载运转
核能为微型装置提供动力 目前,世界各地的研究人员正在开发宽度小于人的头发的微型装置,用于从生化传感器到医学植入体的各种用途。但这方面存在着一个障碍:目前还没人能拿出一种与这么小的微型机械装置相匹配的能源。
任何一个随身携带过使用五磅重电池、而自重仅一磅的便携式电脑的人都该明白这句话的意思。为了实现这些装置的全部潜在用途,需要有这样一种能源,它既能提供强大的动力,又要小得足以安装在同一块芯片上。
现在,威斯康星大学的一组工程师相信他们也许找到了正确的方法。他们已经开始了一个利用核能来提供能量的项目,但这些发电机将与向家庭和工厂提供电力的带穹顶的核电厂完全不同。
这些微型装置的能源不是靠转动的涡轮机来发电,而是利用微量的放射性物质,通过它们的衰变来产生电能。以前也有过这种做法,但规模要大得多。人们曾用这种方法给从心脏起搏器到探索太阳系外层黑暗空间的航天器等各种装置提供能源。
核能是人类最具希望的未来能源。目前人们开发核能的途径有两条:一是重元素的裂变,如铀的裂变;二是轻元素的聚变,如氘、氚、锂等。重元素的裂变技术,己得到实际性的应用;而轻元素聚变技术,也正在积极研制之中。可不论是重元素铀,还是轻元素氘、氚,在海洋中都有相当巨大的储藏量。
铀是高能量的核燃料,1千克铀可供利用的能量相当于燃烧2250吨优质煤。然而陆地上铀的储藏量并不丰富,且分布极不均匀。只有少数国家拥有有限的铀矿,全世界较适于开采的只有100万吨,加上低品位铀矿及其副产铀化物,总量也不超过500万吨,按目前的消耗量,只够开采几十年。而在巨大的海水水体中,却含有丰富的铀矿资源。据估计,海水中溶解的铀的数量可达45亿吨,相当于陆地总储量的几千倍。如果能将海水中的铀全部提取出来,所含的裂变能可保证人类几万年的能源需要。不过,海水中含铀的浓度很低,1000吨海水只含有3克铀。只有先把铀从海水中提取出来,才能应用。而要从海水中提取铀,从技术上讲是件十分困难的事情,需要处理大量海水,技术工艺十分复杂。但是,人们已经试验了很多种海水提铀的办法,如吸附法、共沉法、气泡分离法以及藻类生物浓缩法等。