一、3d打印技术在艺术领域的应用研究?
3D打印给“艺术无国界”这句话赋予了全新的含义,证明新技术和创造力实际上是非常兼容的,与流行的看法相反。因为使用增材制造允许艺术家在他们的创作过程中更进一步。关键字设计自由度:使用增材制造工艺可以实现具有高度细节的高度复杂的几何形状。例如,可用于为博物馆创建复制品的优势。
二、3d打印技术在航天领域应用?
(1)缩短新型航空航天装备的研发周期。
航空航天技术是国防实力的象征,也是国家政治的体现形式,世界各国之间竞争异常激烈。因此,各国都想试图以更快的速度研发出更新的武器装备,使自己在国防领域处于不败之地。而金属3D打印技术让高性能金属零部件,尤其是高性能大结构件的制造流程大为缩短。无需研发零件制造过程中使用的模具,这将极大的缩短产品研发制造周期。
国防大学军事后勤与军事科技装备教研部教授李大光表示上世纪八九十年代,要研发新一代战斗机至少要花10-20年的时间,由于3D打印技术最突出的优点是无需机械加工或任何模具,就能直接从计算机图形数据中生成任何形状的零件,所以如果借助3D打印技术及其他信息技术,最少只需3年时间就能研制出一款新战斗机。加之该技术的高柔性,高性能灵活制造特点,以及对复杂零件的自由快速成型,金属3D打印将在航空航天领域大放异彩,为国防装备的制造提供强有力的技术支撑。
国产大飞机C919上的中央翼缘条零件是金属3D打印技术的在航空领域的应用典型。此结构件长3米多,是国际上金属3D打印出最长的航空结构件。如果采用传统制造方法,此零件需要超大吨位的压力机锻造而成,不但费时费力,而且浪费原材料,目前国内还没有能够生产这种大型结构件的设备。
所以,要想保证飞机研发进程及安全性,我们必须向国外订购此零件,且从订货到装机使用周期长达2年多时间,这严重阻碍了飞机的研发进度。采用金属3D打印技术打印出的中央翼缘条,其研制时间紧一个月左右,其结构强度达到甚至超过了锻件使用标准,完全符合航空使用标准。金属3D打印技术的使用在很大程度上缩短我国大飞机的研制,让研制工作得以顺利进行。
而这仅是金属3D打印技术应用在航空航天领域的一个缩影而已。
(2)提高材料的利用率,节约昂贵的战略材料,降低制造成本。
航空航天制造领域大多都是在使用价格昂贵的战略材料,比如像钛合金、镍基高温合金等难加工的金属材料。传统制造方法对材料的使用率很低,一般不会大于10%,甚至仅为2%-5%。材料的极大浪费也就意味着机械加工的程序复杂,生产时间周期长。如果是那些难加工的技术零件,加工周期会大幅度增加,制造周期明显延长,从而造成制造成本的增加。
金属3D打印技术作为一种近净成型技术,只需进行少量的后续处理即可投入使用,材料的使用率达到了60%,有时甚至是达到了90%以上。这不仅降低了制造成本,节约了原材料,更是符合国家提出的可持续发展战略。
2014年在中国科学院一个专题讨论会上,北航王华明教授曾表示,中国现在仅需55天就可以打印出C919飞机驾驶舱玻璃窗框架。王华明还说,欧洲一家飞机制造公司表示,他们生产同样的东西至少要2年,光做模具就要花200万美元,而中国采用3D打印技术不仅缩短了生产周期,提高了效率,而且节省了原材料,极大地降低了生产成本。
(3)优化零件结构,减轻重量,减少应力集中,增加使用寿命。
对于航空航天武器装备而言,减重是其永恒不变的主题。不仅可以增加飞行装备在飞行过程中的灵活度,而且增加载重量,节省燃油,降低飞行成本。但是传统的制造方法已经将零件减重发挥到了极致,再想进一步发挥余力,已经不太现实。
但是3D技术的应用可以优化复杂零部件的结构,在保证性能的前提下,将复杂结构经变换重新设计成简单结构,从而起到减轻重量的效果。而且通过优化零件结构,能使零件的应力呈现出最合理化的分布,减少疲劳裂纹产生的危险,从而增加使用寿命。通过合理复杂的内流道结构实现温度的控制,使设计与材料的使用达到最优化,或者通过材料的复合实现零件不同部位的任意自由成型,以满足使用标准。
战机的起落架是承受高载荷,高冲击的关键部位,这就需要零件具有高强度,高的抗冲击能力。美国F16战机上使用3D技术制造的起落架,不仅满足使用标准,而且平均寿命是原来的2.5倍。
(4)零件的修复成形。
金属3D打印技术除用于生产制造之外,其在金属高性能零件修复方面的应用价值绝不低于其制造本身。就目前情况而言,金属3D打印技术在修复成形方面所表现出的潜力甚至是高于其制造本身。
以高性能整体涡轮叶盘零件为例,当盘上的某一叶片受损,则整个涡轮叶盘将报废,直接经济损失价值在百万之上。较之前,这种损失可能不可挽回,令人心痛,但是基于3D打印逐层制造的特点,我们只需将受损的叶片看作是一种特殊的基材,在受损部位进行激光立体成形,就可以回复零件形状,且性能满足使用要求,甚至是高于基材的使用性能。由于3D打印过程中的可控性,其修复带来的负面影响很有限。
事实上,3D打印制造的零部件更容易得到修复,匹配性更佳。相较于其他制造技术,在3D修复过程中,由于制造工艺和修复参数的差距,很难使修复区和基材在组织、成分以及性能上保持一致性。但是在修复3D成形的零件时就不会存在这种问题了。修复过程可以看作是增材制造过程的延续,修复区与基材可以达到最优的匹配。这就实现了零件制造过程的良性循环,低成本制造+低成本修复=高经济效益。
(5)与传统制造技术相配合,互通互补。
传统制造技术适用于大批量成形产品的生产,而3D打印技术则更适合个性化或者精细化结构产品的制造。将3D打印技术和传统制造技术相结合,各取所长,充分发挥各自的优势,使制造技术发挥更大的威力。
比如,对于表面要求高质量性能,但中心要求性能一般的零件而言,可以使用传统制造技术生产出中心形状的零件,然后使用激光立体成型技术在这些中心零件上直接成型表面零件,这样就生出了表面性能高,中心要求一般的零件,节省了工艺的复杂程度,减少了生产流程。这种互补的生产组合,在零部件的生产制造中具有重要的实际应用价值。
再者,对于外部结构简单,但是内部结构复杂的零部件,其采用传统制造技术制造内部复杂结构时,过程繁琐,后续加工工序复杂这就造成了生产成本,延长了生产周期。采用外部使用传统制造技术而内部采用3D打印技术直接近净成形,这样只需少量后续工序就可完成产品的制造,这缩短了生产周期,降低了成本,发挥出传统技术和新技术的完美匹配制造的结合,实现了互通互补。
航空航天作为3D打印技术的首要应用领域,其技术优势明显,但是这绝不是意味着金属3D打印是无所不能的,在实际生产中,其技术应用还有很多亟待决绝的问题。比如目前3D打印还无法适应大规模生产,满足不了高精度需求,无法实现高效率制造等。而且,制约3D打印发展的一个关键因素就是其设备成本的居高不下,大多数民用领域还无法承担起如此高昂的设备制造成本。但是随着材料技术,计算机技术以及激光技术的不断发展,制造成本将会不断降低,满足制造业对生产成本的承受能力,届时,3D打印将会在制造领域绽放属于它的光芒。
三、3d打印技术在艺术领域的应用
3D打印技术在艺术领域的应用
3D打印技术作为一项创新性的技术,在艺术领域引起了强烈的关注。它为艺术家们提供了一个全新的创作平台,同时也推动了艺术形式的创新和艺术作品的制作过程的改变。本文将介绍3D打印技术在艺术领域的应用,并探讨它对艺术创作的影响。
1. 创作自由度的提升
传统艺术制作过程中,艺术家们常常受到工具和材料的限制,导致他们无法实现一些复杂或独特的创作想法。然而,3D打印技术的出现改变了这种局面。艺术家们现在可以使用3D建模软件,将自己的创意转化为数字模型,并通过3D打印机将其变为实体作品。这种技术赋予了艺术家们更大的创作自由度,可以实现那些以前难以想象的艺术形式。
通过3D打印技术,艺术家们可以在创作过程中更加注重细节和精准度。无论是雕塑作品还是装置艺术,3D打印技术都可以帮助艺术家们实现更为精细的创作。艺术家们可以根据自己的设计,通过3D打印机打印出具有复杂结构和精确尺寸的作品,这在传统的手工制作中是难以实现的。
2. 创新艺术形式的涌现
3D打印技术的引入也促进了艺术形式的创新。艺术家们可以利用3D打印技术打破传统制作方式的束缚,创作出更为前卫和具有实验性的作品。
例如,在雕塑艺术领域,传统的雕塑需要通过手工雕刻或翻模制作。而3D打印技术可以大大简化雕塑的制作过程,艺术家们可以使用3D建模软件进行设计,然后通过3D打印机打印出作品的模型,最后再进行加工和处理。这种创新方式不仅节省了时间和精力,同时也为艺术家们带来了更多的可能性,使他们能够探索更为复杂和独特的雕塑形式。
此外,3D打印技术还在装置艺术、环境艺术等领域展现出了巨大潜力。艺术家们可以设计并打印出复杂的结构和纹理,从而创建出具有独特视觉效果和触感的作品。这些作品在展览和公共艺术项目中引起了广泛的关注和赞赏。
3. 艺术品的数字化与个性化
3D打印技术使得艺术品的数字化和个性化成为可能。艺术家们可以通过3D扫描将真实世界中的对象转化为数字模型,然后对其进行修改和设计,并最终通过3D打印技术制作出真实物体。这种个性化的创作方式让艺术家们能够表达自己独特的艺术语言,并创作出与众不同的作品。
此外,3D打印技术也为艺术品的复制和再现提供了便利。传统艺术品需要通过手工复制或制作模具进行批量制作,而这些过程都需要大量的时间和精力。借助3D打印技术,艺术家们只需通过扫描或设计一个模型,就能够快速制作出多个一模一样的作品,大大提高了作品的产量和销售能力。
4. 未来展望
随着技术的不断进步和3D打印技术的成熟,相信它在艺术领域的应用还有许多潜力可以挖掘。随着打印材料的不断增多和提升,艺术家们将有更多的选择和创作方式。同时,打印机的速度和精度也将不断提高,打开了更广阔的创作空间。
虽然3D打印技术在艺术领域的应用仍处于初级阶段,但它已经取得了显著的成果。无论是艺术作品的形式创新还是创作自由度的提升,3D打印技术都为艺术家们带来了全新的机遇和挑战。未来,随着技术的不断发展和艺术家们的不断探索,我们可以期待更多精彩而独特的艺术作品通过3D打印技术呈现在我们面前。
四、3D打印技术在法学领域的应用?
在工业4.0的发展浪潮中,工业机器人、3D打印、云计算、虚拟现实、人工智能等都在迅速的发展,在各行业中大放异彩。3D打印作为新兴技术在我国和工业4.0的发展规划中有比较重要的位置,那么在不同的领域中,3D打印能应用于哪些领域呢?3D打印又能用来做什么呢?
3D打印的应用领域主要集中在消费电子、工业器械、汽车、航空、医疗、建筑、科研等领域。经过多年的发展,3D打印在个人使用方面已经有较广的应用范围,正在逐步向家庭应用延伸。
一、个人领域
经过这些处的发展,在个人使用方面,消费级的3D打印机性价比高、运行稳定、打印精度高的特点,在不断的深入着各个家庭环境,现3D打印机企业在大力推广普及消费级的3D打印机,在不断的开发和优化产品,现价格已经做到千元左右,使得价格已经不再成为消费者选择的障碍,消费级3D打印机已不再满足静态的物品、玩具或其他模型,并开始大量打印无人机、机器人、机甲战车等热门的智能化产品。有消费者使用3D打印机1:1的打印出了兰博基尼。
二、家庭领域
在家庭领域使用3D打印机是未来的一大趋势,3D打印机厂商希望能将3D打印机做成每家的必须品,如衣架、碗筷等日常用品都通过3D打印机打印出来;如用户丢失某一件物品,也可以通过自行设计或下载通用模型来打印,这种通过自已制作的方式比去购买更能增加家庭氛围。
三、教育领域
3D就慢在教育方面的应用应该是普及率最高的,众多院校都在探索3D打印技术与教学,开办3D打印特色课程,激发3D打印技术在教育方面的应用。随着3D打印在教育领域的发展,社会对3D打印的认知程度越来越高,相信在未来3D打印的想象空间将进一步扩大。
四、企业领域
3D打印也在走向企业,现技术更新快,传统方面的制造零部件已经不能符合企业的发展了,一些嗅觉敏感的企业已经开始借助3D打印来优化生产流程,达到节约成本,提高效益的目的。通过3D打印技术来压缩产品研发与样品制造方面的时间成本,在一些快速消费行业内能够大大加强企业的竞争力。
3D打印能大大减少在生产过程中原材料的损耗,并且在复杂、精密、个性化等领域,传统的生产工艺难以实现在3D打印方面不存在任何问题。相信在不久的将来,3D打印能够给我们的生活带来更多的变化。3D打印能更深入我们的生活,并能在更多的领域中发挥作用。
五、3D打印技术在能源领域的应用?
传统化石然燃料
关于传统能源(化石燃料),美国能源部(DOE)多年来一直为先进制造业研究提供资金。2018年,15个项目共获得880万美元用于测试其化石燃料系统技术。由DNV GL运营的一个项目将研究使用属性梯度作为超临界CO2动力循环技术的微通道换热器。联合技术研究中心正在开发一种计算方法,用于预测涡轮发动机中添加制造的镍基超合金零件的机械性能。
3D打印技术在燃气轮机制造中的应用已从原型试制逐渐走向实际生产。德国西门子公司利用3D打印技术成功制造和测试了镍基超级合金材料的航改燃气轮机干式低排放预混合器。英国罗-罗公司在新一代大涵道比涡扇发动机核心机上使用3D打印部件和陶瓷基复合材料,燃油效率提高25%,同时排放降低。GE还出货了9000多个3D打印燃气轮机组件。
核电
在核领域,俄罗斯国有核电公司Rosatom成立了一家开发3D打印技术的公司,该公司开发了用于生产电源组件的Gen II打印机。西门子在斯洛文尼亚的Krko核电站安装了一个用于消防泵的金属叶轮。
中国核动力研究设计院与南方增材科技有限公司,曾联合发起ACP100反应堆压力容器增材制造(3D打印)项目。使用大型电熔3D打印技术,可精确地实现结构复杂的大型金属构件一体成型,为核电装备的高质量、高效率、低成本制造开辟了一条新的道路。经过技术鉴定,3D打印试件的产品性能可达到甚至部分优于锻件产品。
核燃料元件制造是集设计与加工于一体的高端精密制造,结构复杂,需多种工序交叉作业加工才能完成 。中核北方核燃料元件有限公司(二〇二厂)使用选择性激光熔化3D打印技术制造了CAP1400自主化燃料原型组件下管座。
BLT-S300采用选择性激光熔化(SLM)技术,通过逐层熔化金属粉末的制造方式,完成传统机械加工无法制造的复杂金属结构零件,制备的成形产品拥有致密性好、尺寸精度高的特点。同时金属3D打印快速制造的技术特点,能够缩减产品开发周期,降低设计与制造成本,快速、高性能的实现核燃料元件开发与制备。
太阳能
太阳能(光伏发电)似乎是应用3D打印的最不可能的能源格式,但研究人员对3D打印太阳能电池的潜力持乐观态度。麻省理工学院的科学家认为,3D打印的效率将提高20%,成本只是传统技术的一半。澳大利亚联邦科学与工业研究组织(CSIRO)以A3板的形式3D打印太阳能电池卷,可应用于建筑物表面以产生可再生能源。
风能
寻找更快、更具成本效益的方法来制造风电机组,以及研究如何更好地利用风能,都是至关重要的,而叶片的3D打印技术则有希望解决这两个问题。在缩短风电机组生产时间和降低制造成本的问题上,3D打印叶片模具也是一个重要的进步。目前,叶片长度平均超过50米,而且还需要足够高的强度来承受巨大的载荷,因此叶片生产流程是高耗能、高成本和高耗时的。
通常,需要用一个阳模来制造叶片模具(阴模),再用阴模来制造玻璃钢叶片。然而,如果引入3D打印技术,将可以直接将第一步取消,降低制造成本,并给研究人员以时间和自由,来对新的性能进行试验,并提高设计的灵活性。
虽然目前的研究仅针对于简化风机叶片的制造过程,但3D打印技术也有助于其他风电机组部件的生产,以便使风电的成本更低。
当然,可再生能源系统需要某处存储器捕获的能量,即电池。曼彻斯特城市大学的研究人员开发出一种能够制造石墨烯电池的3D打印机,哈佛大学的一个团队已经开发出一种3D打印锂离子电池的方法。世界各地的其他研究人员和工程师在3D打印储能方面取得了其他进展,例如苏黎世联邦理工学院的“氧化还原液流”电池。与制造业一样,3D打印将提高能源生产,存储和分配的效率。
六、3d打印技术医疗领域应用?
采用3D打印技术,世界上首次完成了完全使用定制植入物代替整个下颚的制作过程。与传统制作方法相比,3D打印耗费的材料更少,生产时间更短,往往只需数小时便可以制出一只下颌骨。为了避免排斥反应的发生,科研人员在制作完成的下颌骨上涂上了生物陶瓷涂层。技术人员可根据移植患者的具体需求来设计骨骼部件的效果图,然后利用高精度镭射枪来熔解钛粉,并将他们一层层地喷涂叠加起来,最终制作出立体人造骨骼部件成品。整个过程不需要任何胶水或粘结剂。科研人员们已经成功为一名83岁的老妇人植入了经3D打印制成的下颌骨。
2.打印外骨骼
3D打印现在已经进军体外骨骼打印,旨在辅助残疾人士与肌肉萎缩人士提升行动能力。经3D打印制作的轻量级体外骨骼可以辅助用户站立及走动。
3.打印细胞
科学家已经使用人类细胞经3D打印制作出了世界上第一个人造肝脏。研究人员开发出了基于瓣膜的细胞打印过程,可以按特定的模式打印细胞。细胞打印过程中的关键在于打印机喷嘴,喷嘴用力必须轻柔,以保护细胞和组织的生命力。赫瑞瓦特大学开发了一种基于瓣膜的双喷嘴打印机,能够打印高度活细胞如用于组织再生的人体胚胎干细胞,其细胞打印系统方案图,见图2。
4.打印活体组织
研究人员日前创造出一种水滴网络,能够模仿生物组织中的一些细胞特性。利用一台3D打印机,研究小组可将小水滴组装成为一种类似胶状物的物质,它能够像肌肉一样弯曲,并能够像神经细胞束一样传输电信号,可用于修复或缓解器官衰竭。这一技术应用在医疗领域有望能够合成人造组织或器官模型。
5.打印血管
联合3D打印技术和多光子聚合技术,人们已成功打印出人造血管。通过这一过程打印出来的 血管可以与人体组织相互“沟通”,不会发生器官排斥,且可以生长出类似于肌肉的组织。该研究成果将有望用于人体试验和药物测试。
6.打印器官
科研人员采用3D打印技术配合人体自身细胞,使用加入细胞混合物凝胶的可生物降解脚手架, 逐层构建出了肾脏。这项技术还帮助一个孩子成功移植了人工膀胱。此外,利用CT扫描等医学影像技术,3D打印机还可以采用丙烯酸树脂制作出半透明的器官模型,从而帮助外科医生了解器官内部结构,实现肿瘤放疗效果的可视化。美国科学家成功利用3D打印技术制作出了能够精确复制疑难并发症患者的心脏解剖结构的人体心脏模型,用于医生术前研究患者心脏结构。
7.治疗癫痫
日本科研团队研发了一种新的光固化三维打印材料,这是一种具有高导电性的新型树脂,可应用于制作包括3D碳电极的燃料电池或生物传感器的接口。其最有前途的应用是制作可与大脑连接的3D微电极,大脑中的神经可以通过3D微电极的接口进行互连,从而发送或接收来自神经元的电信号,可用于进行深部脑刺激和相关疾病如癫痫、抑郁症、帕金森氏病的干预及治疗。这项技术目前仍处于实验阶段。
七、3D打印技术在计算机领域的应用?
3D打印技术可以运用生活中从小到大的许多领域。
3D打印通常是采用数字技术材料打印机来实现的。常在模具制造、工业设计等领域被用于制造模型,后逐渐用于一些产品的直接制造,已经有使用这种技术打印而成的零部件。
该技术在珠宝、鞋类、工业设计、建筑、工程和施工(AEC)、汽车,航空航天、牙科和医疗产业、教育、地理信息系统、土木工程、枪支以及其他领域都有所应用。
3D打印机
建筑设计
在建筑业里,工程师和设计师们已经接受了用3D打印机打印的建筑模型,这种方法快速、成本低、环保,同时制作精美。完全合乎设计者的要求,同时又能节省大量材料。
医疗行业
西安市红会医院借助3d打印技术实现西北首例多孔型钛金属骨植入假体治疗强直性脊柱炎患者骨折脱位患者治疗。
西安市第四医院“私人定制”3D打印置换肩关节完成高难度置换术
西安交通大学第一附属医院设立3D打印医学研究与应用中心,标志着医工结合、强强联手的3D打印医学研究与应用中心正式落户陕西。
汽车制造业
不是说你的车是3D打印机打印出来的(当然或许有一天这也有可能),而是说汽车行业在进行安全性测试等工作时,会将一些非关键部件用3D打印的产品替代,在追求效率的同时降低成本。
传统制造业
传统制造业也需要很多3D打印产品,因为3D打印无论是在成本、速度和精确度上都要比传统制造好很多。而3D打印技术本身非常适合大规模生产,所以制造业利用3D技术能带来很多好处,甚至连质量控制都不再是个问题。
科学研究
美国德雷塞尔大学的研究人员通过对化石进行3D扫描,利用3D打印技术做出了适合研究的3D模型,不但保留了原化石所有的外在特征,同时还做了比例缩减,更适合研究。
产品原型
比如微软的3D模型打印车间,在产品设计出来之后,通过3D打印机打印出来模型,能够让设计制造部门更好的改良产品,打造出更出色的产品。
文物保护
3D打印技术在复原并保存历史文化方面具有重要意义,能还原文物的真实性,记录这些文物曾经遭受灭顶之灾的历史,有效避免了人类的历史记忆被抹杀。
一直以来,文物古迹的保护始终困扰着考古界,文物作为一种不可再生资源,一旦被毁掉,将再也不复存在,比如,西安秦始皇兵马俑,刚刚出土的时候色泽亮丽,表情栩栩如生,如今早已失去刚刚出土时的风采,风化严重,鲜艳的色泽消失了,暗淡如同黄泥。
食品产业
在食品行业,研究人员已经开始尝试打印巧克力了。或许在不久的将来,很多看起来一模一样的食品就是用食品3D打印机“打印”出来的。当然,到那时可能人工制作的食品会贵很多倍。
配件、饰品
这是最广阔的一个市场。在未来不管是你的个性笔筒,还是有你半身浮雕的手机外壳,抑或是你和爱人拥有的世界上独一无二的戒指,都有可能是通过3D打印机打印出来的。甚至不用等到未来,现在就可以实现。
八、3d打印在医疗领域应用?
一、运用3D打印制造医疗模型和手术导板
医生可以运用患者的CT数据来进行三维建模,通过三维建模将数据导入到3D打印机,然后用3D打印机将患者的数据模型打印出来。这样可以更好帮助医生更为直观地观测到患者需要手术部位的三维结构。从而帮助医生在手术治疗时定制更好的手术方案,从而提升手术成功率、降低手术风险。
二、运用3D打印制造人体植入物
如患者有骨肿瘤、骨骼缺损、颌面损伤、颅骨修补等骨科问题,用一般的修复产品是难以满足患者的治疗需求。因为每个患者的实际情况不一,需要特定制作的植入物才能帮助患者修复成功。同样的还有口腔齿科,也是因为人体口腔牙齿的排列情况、受损情况、实际医疗情况不一,也是需要高度的定制。因此,不管是骨科还是齿科,都需要运用3D打印技术来为患者进行量身定制,让植入物医疗更加精准、,并且有效减轻医资力量紧缺的问题。
三、运用3D打印制造康复器械
3D打印为矫正鞋垫、仿生手、助听器等康复器械产生的真正价值不单单是是完成精准的定制化,更关键反映在让精准、高效的数字化制造技术替代手工制作方式,减少生产周期。以助听器举例,传统工艺制作,技师必须根据患者的耳道模型做出注塑模具,随后对模具进行钻音孔等后处理。而运用3D打印机制作助听器只需将扫描的CAD文件转成3D打印机可读取的设计文件,进一步打印出来就可以了。现阶段市面上的大型工业3D打印机除去工业运用外,也可运用于医疗模型打印。
四、运用3D打印制造生物器官
这里不再多叙述,就以2019年4月的一篇报道为例,在以色列一所大学里,人们3D患者的生物组织成功地打印出一个小型心脏,并且具有细胞、血管、心室和心房等基本功能的完美的“心脏”。虽然无法直接运用到人体,也有诸多因素仍无法克服,但这次打印心脏成功,是3D打印直接打印生物组织的一次重大突破。
九、彩色3D打印技术在各个领域的应用进展?
3D打印的应用领域很广泛。教育、医疗、服饰、广告、建筑、手办、工业制造、原型开发、模具、文物修复等众多行业中都有应用。
因为3D打印是一种增材制造技术,上游取决于材料,有别于传统生产工艺流程,所以基本上解决了材料问题是万物皆可打印。
十、3d打印技术在航空航天领域的应用?
早在1989年,随着新兴技术的采用,航空航天业就开始从3D打印中受益。在随后的几十年中,这种技术不断发展。航空航天业中的3D打印可能不如鞋类或汽车制造业那样引人注目,但是新兴技术带来的变化最终可以帮助我们的物种殖民新行星。
像许多其他行业一样,3D打印之所以吸引人,是因为它允许公司快速制作想法原型,或以比标准制造方法少得多的成本和更少的时间创建功能完备的零件。定制3D打印将使工程师能够按需打印零件,以满足可能的设计挑战或维修工作。简而言之,曾经复杂昂贵的零件将比以往任何时候都更轻、更可靠、更快,这对于航空业来说是一个很好的机会。
航空业增材制造在2015年占3D打印总收入的16%,被用于帮助民用飞机、新型航天器甚至卫星生产。今天,我们将探索增材制造对航空航天业产生影响的一些最令人振奋的方式。
实际上,NASA和Virgin Orbit已经开始测试3D打印火箭燃烧室。Virgin Orbit利用其资源向发射通常携带小型卫星进入太空的火箭。最近,Virgin Orbit邀请NASA的专家来创建3D打印燃烧室,这是一种“结合多种材料并利用尖端技术的制造工艺”。燃烧室被视为火箭发动机的心脏,燃料在这里与氧化剂混合并爆炸。
Virgin Orbit使用一种铜合金制作了火箭燃烧室。他们使用了高压液氧/煤油作为推进剂,燃烧室在24次,60秒的测试点火中成功获得了超过2000磅的推力。
NASA高级工程师保罗·格雷德(Paul Gradl)对该项目感到兴奋,他说:“传统上,制造、测试和交付常规燃烧室需要花费数月的时间。我们可以大大减少这一时间。”
“增材制造旨在扩展和增强传统工艺。它意味着新的设计和更好的性能,并生产出了高度耐用的硬件。通过这种合作关系,我们正在进一步提高这种能力。”
在不久的将来,通过增材制造工艺生产的发动机可以带我们进入火星。